
Log 708 - Chapter 7 Solutions

Halvard Arntzen

7.1
a.

We’ll read the data, and compute dummy variables as follows.
#read data
flatprices <- read.csv("M:/Undervisning/Undervisningh21/Data/flat_prices.csv")
head(flatprices)

## price area rooms standard situated town distcen age rent
## 1 1031 100 3 2 6 1 5 15 2051
## 2 1129 116 3 1 5 1 4 42 2834
## 3 1123 110 3 2 5 1 3 25 2468
## 4 607 59 2 3 5 1 6 25 1940
## 5 858 72 2 3 4 1 1 17 1611
## 6 679 64 2 2 3 1 3 17 2039
#compute dummies as in com
flatprices$DMOL = as.integer(flatprices$town == 1)
#encode DKSU = 1 for Kristiansund
flatprices$DKSU = as.integer(flatprices$town == 2)
#encode DASU = 1 for Ålesund
flatprices$DASU = as.integer(flatprices$town == 3)

The following is not a part of the question, but shows a way to print a sample of the dataframe
to check that we have calculated correctly:
#we can show a random sample of flats: (Recall chapter 3? :-) )
set.seed(1212)
n <- nrow(flatprices)
#sample 8 row numbers from 1 to n

S <- sample(1:n, size = 8, replace = FALSE)
#show rows corresponding to S and selected columns
DF <- flatprices[S, ]
subset(DF, select = c(price, area, town, DMOL, DKSU, DASU))
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## price area town DMOL DKSU DASU
## 137 1698 159 3 0 0 1
## 108 871 94 2 0 1 0
## 126 738 74 3 0 0 1
## 64 1031 119 2 0 1 0
## 44 766 83 2 0 1 0
## 55 874 100 2 0 1 0
## 6 679 64 1 1 0 0
## 131 958 87 3 0 0 1

b.

We could probably figure out how the model looks from the compendium, but here we try to
analyze the situation directly. Let’s check what variables we have
names(flatprices)

## [1] "price" "area" "rooms" "standard" "situated" "town"
## [7] "distcen" "age" "rent" "DMOL" "DKSU" "DASU"

So, we should try first all except those related to town, then strip away non-significant
variables.
modelA <- lm(price ~ area + rooms + standard + situated +

distcen + age + rent, data = flatprices)

summary(modelA)

##
## Call:
## lm(formula = price ~ area + rooms + standard + situated + distcen +
## age + rent, data = flatprices)
##
## Residuals:
## Min 1Q Median 3Q Max
## -83.30 -55.45 25.03 49.71 89.95
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 213.361798 32.609031 6.543 1.02e-09 ***
## area 10.404197 0.418629 24.853 < 2e-16 ***
## rooms -14.377947 10.057634 -1.430 0.155
## standard -1.519766 5.169732 -0.294 0.769
## situated 18.201727 2.801950 6.496 1.30e-09 ***
## distcen -24.106278 2.533768 -9.514 < 2e-16 ***
## age -0.413237 0.613917 -0.673 0.502
## rent -0.096044 0.008879 -10.817 < 2e-16 ***
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 55.08 on 142 degrees of freedom
## Multiple R-squared: 0.964, Adjusted R-squared: 0.9622
## F-statistic: 543.2 on 7 and 142 DF, p-value: < 2.2e-16

Three variables are non-significant, we can take out the one with max P-value: take out
standard:
modelB <- update(modelA, . ~ . - standard)
summary(modelB)

##
## Call:
## lm(formula = price ~ area + rooms + situated + distcen + age +
## rent, data = flatprices)
##
## Residuals:
## Min 1Q Median 3Q Max
## -83.02 -55.78 26.06 49.74 88.25
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 210.911441 31.424868 6.712 4.18e-10 ***
## area 10.406967 0.417184 24.946 < 2e-16 ***
## rooms -14.448710 10.022583 -1.442 0.152
## situated 18.081878 2.763262 6.544 9.98e-10 ***
## distcen -24.060495 2.520886 -9.544 < 2e-16 ***
## age -0.420555 0.611449 -0.688 0.493
## rent -0.096118 0.008847 -10.864 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 54.91 on 143 degrees of freedom
## Multiple R-squared: 0.964, Adjusted R-squared: 0.9625
## F-statistic: 637.8 on 6 and 143 DF, p-value: < 2.2e-16

Continuing, we take out age:
modelC <- update(modelB, . ~ . - age)
summary(modelC)

##
## Call:
## lm(formula = price ~ area + rooms + situated + distcen + rent,
## data = flatprices)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -82.83 -56.31 28.38 48.76 89.01
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 199.503272 26.642177 7.488 6.42e-12 ***
## area 10.423401 0.415736 25.072 < 2e-16 ***
## rooms -14.844367 9.987737 -1.486 0.139
## situated 18.073384 2.758175 6.553 9.37e-10 ***
## distcen -24.061507 2.516269 -9.562 < 2e-16 ***
## rent -0.095765 0.008816 -10.862 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 54.81 on 144 degrees of freedom
## Multiple R-squared: 0.9639, Adjusted R-squared: 0.9626
## F-statistic: 768.1 on 5 and 144 DF, p-value: < 2.2e-16

Finally, remove rooms
modelD <- update(modelC, . ~ . - rooms)
summary(modelD)

##
## Call:
## lm(formula = price ~ area + situated + distcen + rent, data = flatprices)
##
## Residuals:
## Min 1Q Median 3Q Max
## -84.54 -56.62 29.45 51.12 87.32
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 213.63978 24.99003 8.549 1.59e-14 ***
## area 9.85955 0.17074 57.746 < 2e-16 ***
## situated 17.87278 2.76633 6.461 1.48e-09 ***
## distcen -23.93052 2.52519 -9.477 < 2e-16 ***
## rent -0.09745 0.00878 -11.099 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 55.03 on 145 degrees of freedom
## Multiple R-squared: 0.9633, Adjusted R-squared: 0.9623
## F-statistic: 951.7 on 4 and 145 DF, p-value: < 2.2e-16
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So, we end with the same model as in the compendium, with predictor variables area,
situated, distcen, rent. Note that the R2 is essentially the same for modelA and
modelD.

c + d + e.

So, we should leave out DKSU and include the two others. We continue to use update as
follows. We can call the model objects modelPRK and modelPRM
library(stargazer)

## Warning: package 'stargazer' was built under R version 4.0.3

##
## Please cite as:

## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.

## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
modelPRM <- update(modelD, . ~ . + DKSU + DASU)
modelPRK <- update(modelD, . ~ . + DMOL + DASU)

stargazer(modelD, modelPRM, modelPRK,
type = "text",
keep.stat = c("n", "rsq"))

##
## ==============================================
## Dependent variable:
## ---------------------------------
## price
## (1) (2) (3)
## ----------------------------------------------
## area 9.860*** 9.978*** 9.978***
## (0.171) (0.033) (0.033)
##
## situated 17.873*** 15.779*** 15.779***
## (2.766) (0.536) (0.536)
##
## distcen -23.931*** -21.160*** -21.160***
## (2.525) (0.496) (0.496)
##
## rent -0.097*** -0.098*** -0.098***
## (0.009) (0.002) (0.002)
##
## DKSU -106.013***
## (2.095)
##
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## DMOL 106.013***
## (2.095)
##
## DASU 2.665 108.677***
## (2.419) (2.163)
##
## Constant 213.640*** 254.281*** 148.268***
## (24.990) (5.056) (4.941)
##
## ----------------------------------------------
## Observations 150 150 150
## R2 0.963 0.999 0.999
## ==============================================
## Note: *p<0.1; **p<0.05; ***p<0.01

The PRK model is in column (3), the R2 is the same as for PRM, so the explanatory power
is the same. Further, the coefficients common to the two models (except DASU) are also
identical. We get the suspicion that the two models are in some sense identical, only differing
in the chosen reference town. For PRM and PRK respectively, the constant reflects the level
of the reference town, being Molde and Kristiansund. As expected these are different.

In fact, the estimated coefficient of DMOL in the PRK model represents the difference
between Kristiansund and Molde. This is identical to the difference in constant terms from
PRK to PRM.

f. Here we need to make a dataframe with the given information. We need to include
values for all dummy variables, since these are part of the models. This dataframe will
have only one row, if we don’t want to try some variations.

test <- data.frame(area = 90, rooms = 3, standard = 3,
distcen = 3, situated = 8, age = 25,
rent = 2500, DMOL = 1, DKSU = 0, DASU = 0)

predictPRM <- predict(modelPRM, test)
predictPRK <- predict(modelPRK, test)
#print both using the "cat" function (this is just for fancier output...not necessary of #course)

cat("PRM: ", predictPRM, " PRK: ", predictPRK)

## PRM: 968.9268 PRK: 968.9268

Both models predict about 970 000 for the flat.

g.

For comparisons with Kristiansund, we look to the model PRK; here we find Molde at about
106 000+ and Ålesund at about 109 000+, and both estimates are significantly different from
0. Comparing Molde and Ålesund (and asserting the significance) is easiest with the PRM
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model, where we find 2665 as the exact estimated difference, and this is not significantly
different from 0, meaning that we have no strong evidence of a true level difference between
Molde and Ålesund.

h.

The model needs to allow modification of the β1 coefficient, dependent on the two dummy
variables, so something like:

Y = β0 + (β1 + cMDMOL + cADASU)X1 + β2X2 + · · · + βMDMOL + βADASU + E .

i. We can do this in the “R” way, described in chapter 7.5 by redefining town as a factor.
library(dplyr)
flatprices$town <- as.character(flatprices$town)
#recode to names "Molde", "Krsund", "Alesund":
flatprices$town <- recode(flatprices$town, "1" = "Molde", "2" = "Krsund", "3" = "Alesund")
#define town as "factor".
flatprices$town <- factor(flatprices$town,

levels = c("Molde", "Krsund", "Alesund"))

#ensure Kristiansund is reference level.
flatprices$town <- relevel(flatprices$town, ref = "Krsund")

#then estimate:
intermodelPRK <- lm(price ~ town*area + distcen + situated + rent, data = flatprices)
summary(intermodelPRK)

##
## Call:
## lm(formula = price ~ town * area + distcen + situated + rent,
## data = flatprices)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.000 -7.712 -0.045 6.596 29.183
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 151.099094 5.582742 27.065 <2e-16 ***
## townMolde 96.506906 7.817812 12.344 <2e-16 ***
## townAlesund 105.495634 7.653326 13.784 <2e-16 ***
## area 9.950539 0.042747 232.779 <2e-16 ***
## distcen -21.195336 0.500512 -42.347 <2e-16 ***
## situated 15.737518 0.539886 29.150 <2e-16 ***
## rent -0.098339 0.001715 -57.336 <2e-16 ***
## townMolde:area 0.097831 0.077562 1.261 0.209
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## townAlesund:area 0.031656 0.074543 0.425 0.672
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.63 on 141 degrees of freedom
## Multiple R-squared: 0.9987, Adjusted R-squared: 0.9986
## F-statistic: 1.322e+04 on 8 and 141 DF, p-value: < 2.2e-16

From this we see everything except the interaction terms is significant.

j. We could go for a solution using factor representation of the variable, rather than the
suggested dummy variables. Since the interactions did not come out significant, we can
simply update the PRK model, after some recoding.

flatprices$room <- as.character(flatprices$room)
#recode to groups
flatprices$room <- recode_factor(flatprices$room, "1" = "R1", "2" = "R2", "3" = "R3",

"4" = "R4", .default = "R5")

extendedmodel <- update(modelPRK, . ~ . + room)
summary(extendedmodel)

##
## Call:
## lm(formula = price ~ area + situated + distcen + rent + DMOL +
## DASU + room, data = flatprices)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.5064 -7.4962 0.0229 5.7055 28.2811
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 150.969406 7.509109 20.105 <2e-16 ***
## area 9.888065 0.071733 137.846 <2e-16 ***
## situated 15.696140 0.552118 28.429 <2e-16 ***
## distcen -21.106653 0.501243 -42.109 <2e-16 ***
## rent -0.098856 0.001747 -56.592 <2e-16 ***
## DMOL 106.149539 2.115873 50.168 <2e-16 ***
## DASU 108.917450 2.205048 49.395 <2e-16 ***
## roomR2 4.200167 5.992772 0.701 0.485
## roomR3 7.605056 6.817079 1.116 0.267
## roomR4 9.777240 7.933441 1.232 0.220
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## roomR5 12.569937 9.880324 1.272 0.205
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.68 on 139 degrees of freedom
## Multiple R-squared: 0.9987, Adjusted R-squared: 0.9986
## F-statistic: 1.048e+04 on 10 and 139 DF, p-value: < 2.2e-16

None of the levels of room appears to be significant, when controlling for other variables.

k.

Using dummy variables, say R3 for 3-room flats, and DMOL for Molde, then

DM3 = DMOL · R3

would be a dummy that is 1 only for 3-rooms flats in Molde. Using DM3 to correct β1 in
e.g. PRK would give the mentioned effect. For these data such modeling detail is hardly
recommended, but for large data sets it could be just the thing we need to study some subtle
phenomena!

7.2
Need to start reading data as usual.
library(stargazer)
wagedata <- read.csv("M:/Undervisning/Undervisningh21/Data/Wages.csv")
head(wagedata)

## obs wage female nonwhite union education exper age wind femalenonw
## 1 1 11.55 1 0 0 12 20 38 1 0
## 2 2 5.00 0 0 0 9 9 24 0 0
## 3 3 12.00 0 0 0 16 15 37 1 0
## 4 4 7.00 0 1 1 14 38 58 0 0
## 5 5 21.15 1 1 0 16 19 41 1 1
## 6 6 6.92 1 0 0 12 4 22 1 0

a. We’ll run a regression with the suggested variables. We recode female into a factor,
called gender with levels male, female. This is just to improve on the look of output.
We can still keep the original variable to compare.

library(dplyr)
wagedata$gender <- as.character(wagedata$female)

wagedata$gender <- recode(wagedata$gender, "0" = "male", "1" = "female")
wagedata$gender <- factor(wagedata$gender, levels = c("male", "female"))
wagedata$gender <- relevel(wagedata$gender, ref = "male")
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wagereg1 <- lm(wage ~ education + exper + female, data = wagedata)
wagereg2 <- lm(wage ~ education + exper + gender, data = wagedata)

stargazer(wagereg1, wagereg2, type = "text",
keep.stat=c("rsq", "ser"),
column.labels = c("model1", "model2"),
model.numbers = FALSE)

##
## ============================================================
## Dependent variable:
## ----------------------------
## wage
## model1 model2
## ------------------------------------------------------------
## education 1.394*** 1.394***
## (0.066) (0.066)
##
## exper 0.175*** 0.175***
## (0.016) (0.016)
##
## female -3.186***
## (0.364)
##
## genderfemale -3.186***
## (0.364)
##
## Constant -7.653*** -7.653***
## (1.006) (1.006)
##
## ------------------------------------------------------------
## R2 0.316 0.316
## Residual Std. Error (df = 1285) 6.536 6.536
## ============================================================
## Note: *p<0.1; **p<0.05; ***p<0.01

The two models are of course identical.

b. Since we introduced the factor gender we can do like this:
library(ggplot2)
ggplot(wagedata, aes(x = education, y = wage, color = gender)) +

geom_point(size = 2, alpha = 0.5) +
geom_smooth(method = lm, se = FALSE)

## `geom_smooth()` using formula 'y ~ x'
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It seems that years of education pays off better for male workers.

c. Testing whether a significant interaction exist between gender and education.
wagereg3 <- lm(wage ~ education*gender + exper, data = wagedata)
stargazer(wagereg2, wagereg3, type = "text",

keep.stat = c("rsq", "ser"),
column.labels = c("model2", "model3"),
model.numbers = FALSE)

##
## ==========================================================
## Dependent variable:
## -----------------------------------
## wage
## model2 model3
## ----------------------------------------------------------
## education 1.394*** 1.503***
## (0.066) (0.088)
##
## exper 0.175*** 0.173***
## (0.016) (0.016)
##
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## education:genderfemale -0.243*
## (0.130)
##
## genderfemale -3.186*** 0.008
## (0.364) (1.747)
##
## Constant -7.653*** -9.074***
## (1.006) (1.260)
##
## ----------------------------------------------------------
## R2 0.316 0.318
## Residual Std. Error 6.536 (df = 1285) 6.530 (df = 1284)
## ==========================================================
## Note: *p<0.1; **p<0.05; ***p<0.01

Comparing models 2 and 3 we find something interesting. In model 3 the overall gender
difference is not significant, while we get an interaction effect as visualized above that is
significant. Judging by model 3, on average, men gain 1.503$ per extra year of education,
while women gain 0.243$ less, so about 1.26$ per extra year for women. So, it appears that
the “flat” difference in model 2 is not correct. Using a more detailed model, we can see that
the difference is caused by interaction.

d. We should make a dataframe for Jim and Maria, and compare the forecast wages using
model3

testworkers <- data.frame(name = c("Maria", "Jim"),
education = c(12, 12),
exper = c(10, 10),
gender = c("female", "male"))

# alternatively, if we use the original "female" variable, we should have
# female = c(1, 0) in defining the dataframe.

predictedwages <- predict(wagereg3, testworkers)

cbind(testworkers, round(predictedwages, 2))

## name education exper gender round(predictedwages, 2)
## 1 Maria 12 10 female 7.79
## 2 Jim 12 10 male 10.70

The expected wages are 7.8, and 10.7 dollars respectively.

e. If the female and male workforce was homogeneous in all variables not included in the
regression, we could say that the result strongly points to a large wage discrimination
of women. There is however good reasons to expect that some of the estimated effects
are biased from omitted variables. For example the model does not account for the
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type of position (e.g. leader at some level vs ordinary worker) or the type of industry
(e.g. mining vs healt care). It is likely that wage differences and gender differences
relating to such factors lead to errors in the estimated interaction effect. If we could
control for type of position and industry to some extent, we come closer to a comparison
of men and women doing the same job which is where the question of “fair wages” can
be adressed in a better way. (A different issue is of course whether the gender and
wage differences based on position and industry type are fair. I.e. is it “fair” that
more women work in health care and that health care workers generally earn less than
miners?)

The data is somewhat old, and at the time probably more of “old fashioned” gender divisions
were present in the USA than today. Newer data could give a different result, of course.

f. We are to test for an interaction effect as suggested.
wagereg4 <- lm(wage ~ education*gender + exper*gender, data = wagedata)
stargazer(wagereg3, wagereg4, type = "text",

keep.stat = c("rsq", "ser"),
column.labels = c("model2", "model3"),
model.numbers = FALSE)

##
## ==========================================================
## Dependent variable:
## -----------------------------------
## wage
## model2 model3
## ----------------------------------------------------------
## education 1.503*** 1.531***
## (0.088) (0.088)
##
## genderfemale 0.008 2.906
## (1.747) (1.966)
##
## exper 0.173*** 0.224***
## (0.016) (0.023)
##
## education:genderfemale -0.243* -0.320**
## (0.130) (0.132)
##
## genderfemale:exper -0.100***
## (0.032)
##
## Constant -9.074*** -10.418***
## (1.260) (1.325)
##
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## ----------------------------------------------------------
## R2 0.318 0.324
## Residual Std. Error 6.530 (df = 1284) 6.507 (df = 1283)
## ==========================================================
## Note: *p<0.1; **p<0.05; ***p<0.01

From model 4 we learn that also the experience variable has a significant interaction with
gender. This effect can to some extent be caused by the way the “experience” variable was
calculated (as outlined in exercise 6.1). Since more women spend some years at home with
children the “experience” variable more often give the correct value for men, while for women
it overestimates the professional work experience, and so it appears that experience pays off
less for women.

As final words, this exercise exemplifies that wage modeling can be really challenging, and
with the limited selection of variables available here, we are likely to have severe bias in
our estimates. Interestingly, we could see that the “flat” wage difference was not real, an
interaction effect gave a better picture of the situation. Further it is an example where
regression models can be highly valuable even with relatively low R2 values. The highest we
got here was around 0.32.
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