
Log 708 - Chapter 6 Solutions

Halvard Arntzen

6.1
a. The formula takes a workers age (X3), subtracts years of education (X1) and preschool

years (6). If a worker has been working continuously since end of education, this should
give exactly the years of work experience X1 that we want. For some workers, there
may be a number of years after ending education that was not spent working. For such
workers the formula over-estimates the true working experience. Given that the workers
in the sample may have been in “working age” since about 1950 we should expect that
a substantially larger proportion of the women have been at home raising kids etc. For
these women, the true work experience can be greatly overrated by the formula.

b. The formula explicitly shows that one variable is a linear combination of the others.
This is a direct violation of assumption E, and means that parameters can not be
estimated for such model. We can read the data, and try a regression to see what we
get from R in this case.

wagedata <- read.csv("M:/Undervisning/Undervisningh21/Data/Wages.csv")
head(wagedata)

## obs wage female nonwhite union education exper age wind femalenonw
## 1 1 11.55 1 0 0 12 20 38 1 0
## 2 2 5.00 0 0 0 9 9 24 0 0
## 3 3 12.00 0 0 0 16 15 37 1 0
## 4 4 7.00 0 1 1 14 38 58 0 0
## 5 5 21.15 1 1 0 16 19 41 1 1
## 6 6 6.92 1 0 0 12 4 22 1 0
failreg <- lm(wage ~ education + exper + age, data = wagedata)
coef(failreg)

## (Intercept) education exper age
## -9.5860816 1.4145209 0.1787117 NA

So, we see that R solves the problem by excluding the age variable, and then estimates
the equation based on the two other variables. The coefficient for age is listed as NA (Not
Available).

c. For model A, we’re supposed to use only education.
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#run regression
regA <- lm(wage ~ education, data = wagedata)

It’s always a good idea to look at a scatterplot in this connection.
with(wagedata, plot(education, wage))
abline(regA)
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There is some evidence of a positive correlation, although not very high.

Now, we can either look at the whole summary or “cherry-pick” what we want. So either
summary(regA)

##
## Call:
## lm(formula = wage ~ education, data = wagedata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.486 -4.749 -1.399 3.101 48.057
##
## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.4745 0.9356 -4.783 1.93e-06 ***
## education 1.2811 0.0696 18.408 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.028 on 1287 degrees of freedom
## Multiple R-squared: 0.2084, Adjusted R-squared: 0.2078
## F-statistic: 338.8 on 1 and 1287 DF, p-value: < 2.2e-16

Where we find estimated equation y = −4.47 + 1.28 · x1 and R2 = 0.21, or we can go
coef(regA)

## (Intercept) education
## -4.474476 1.281113
#compute, but "hide" summary in object s. Note that s will be a "list" that we can inspect
#in the Rstudio "environment" window.
s <- summary(regA)

#get R square from s
s$r.square

## [1] 0.2084087

A 95% confidence interval is produced this way:
confint(regA)

## 2.5 % 97.5 %
## (Intercept) -6.309881 -2.639071
## education 1.144577 1.417649

So, the interval is [1.14, 1.41].

d. So, let’s run the regression first, either of the following codes will work:
#using full formula for model B
regB <- lm(wage ~ education + exper, data = wagedata)

#or using the update mechanism
regB <- update(regA, . ~ . + exper)

We can certainly answer the questions based on a summary(regB) code. That gives as follows
summary(regB)

##
## Call:
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## lm(formula = wage ~ education + exper, data = wagedata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19.698 -3.928 -1.064 2.745 48.889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.58608 1.00977 -9.493 <2e-16 ***
## education 1.41452 0.06770 20.894 <2e-16 ***
## exper 0.17871 0.01633 10.941 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.725 on 1286 degrees of freedom
## Multiple R-squared: 0.2758, Adjusted R-squared: 0.2747
## F-statistic: 244.9 on 2 and 1286 DF, p-value: < 2.2e-16

However, since we are also going to compare model A and B, this is a good place to use the
stargazer package:
library(stargazer)

## Warning: package 'stargazer' was built under R version 4.0.3
stargazer(regA, regB, type = "text",

ci = TRUE,
keep.stat = c("n", "rsq"))

##
## ===============================================
## Dependent variable:
## ----------------------------------
## wage
## (1) (2)
## -----------------------------------------------
## education 1.281*** 1.415***
## (1.145, 1.418) (1.282, 1.547)
##
## exper 0.179***
## (0.147, 0.211)
##
## Constant -4.474*** -9.586***
## (-6.308, -2.641) (-11.565, -7.607)
##
## -----------------------------------------------
## Observations 1,289 1,289
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## R2 0.208 0.276
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01

This shows: For model B, both variables are highly significant (the P-values for the standard
test is below 0.01 as indicated by "***"), both variables affect the wages positively, which
is as expected. The R2 increases to about 0.28 from 0.21, another sign that exper really
adds explanatory power to the model A. The coefficient for education is not greatly affected
by the inclusion of exper, as we can see by noting that the confidence intervals from model
A, B are overlapping. A reason for this is likely that the two independent variables are not
correlated in any substantial way. (In fact the correlation coeff is -0.18). (Recall from theory
that if strong omitted variable bias in model A is caused by omitting exper, the two variables
in model B would have to be more correlated.)

e. So, the coefficient estimates are marginal effects i.e, an extra year of education is
estimated to cause on average 1.45$ increase in wage, while an extra year of experience
gives on average 0.18$

f. The predictions can be computed by inserting the data for Maria and Jane into the
estimated equation for model B. Furthermore, an approximate 95% error margin can
be found as 2Se. We find Se from R by either looking at the complete summary, or by
doing:

s <- summary(regB)
s$sigma

## [1] 6.724914

So, the error margin can be taken at about 13.44.

We can be lazy and ask R to calculate the predictions with prediction interval.
newdata <- data.frame(education = c(12, 12),

exper = c(10, 15),
row.names = c("Maria", "Jane"))

pred_wages <- predict(regB, newdata, interval = "prediction")
cbind(newdata, round(pred_wages, 2))

## education exper fit lwr upr
## Maria 12 10 9.18 -4.03 22.38
## Jane 12 15 10.07 -3.13 23.27

The result shows that the model is not great for prediction, because of the wide intervals.
Still the model can be good for estimating marginal effects!

g. Since model B does not include gender as a variable, it will not predict a different wage
for Jim.

5



6.2
Ok, we read the file from our favorite place.
usedcars <- read.csv("M:/Undervisning/Undervisningh21/Data/used_cars.csv")
head(usedcars)

## price age agecat mileage statwag newprice region eu_time corros report
## 1 69.11825 17 3 226 0 310 0 3 2 0
## 2 56.30901 16 3 186 0 270 0 5 2 0
## 3 141.90664 7 1 43 1 230 0 22 1 0
## 4 262.93979 2 1 45 0 320 0 0 0 1
## 5 9.00000 17 3 183 0 200 0 10 2 0
## 6 110.20784 10 2 117 0 240 1 15 2 1

We could get rid of the disturbing extra decimals by using round(price, 2) but let’s not
bother. We run the mentioned regressions as follows.
regA <- lm(price ~ mileage + newprice, data = usedcars)

regB <- lm(price ~ age + mileage + newprice, data = usedcars)

#or: regB <- update(regA, . ~. + age)

coef(regA)

## (Intercept) mileage newprice
## -21.0148029 -0.7820433 0.9284720
coef(regB)

## (Intercept) age mileage newprice
## 5.1487847 -10.2882781 -0.1285636 0.8956327

So we get respectively
price = −21− 0.78 ·mileage + 0.92 · newprice

price = 5.15− 10.29 · age− 0.13 ·mileage + 0.89 · newprice

for model A, B.

b. The estimate jumps from -0.78 to -0.13 when we also include age.

c. Since age and mileage is very correlated, when we only include mileage in model A
this effect also covers a lot of the “age effect”. When we actively include age in the
model, we can isolate the effect of mileage so that the effect on cars of same age can be
estimated.

d. None of them are in fact wrong, but the parameter in question is not actually the same
effect as described above. That’s why we get different intervals. However, we can say
that -0.78 is a wrong estimate for the marginal effect of mileage.
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6.3
Suppose prices on average drop by p percent per year of age, and by q per added 1000km of
mileage. Then a model for the price Y , given X1, X2, X3 as in exercise ?? is as follows.

Y = X1 ·
(

1− p

100

)X2

·
(

1− q

100

)X3

+ E .

This is a highly nonlinear model. We will learn in subsequent chapters how to estimate
parameters for this and other types of non-linear models. To clean up a little bit: It will often
be more convenient to model errors as multiplicative rather than additive for such models.
Also, with

r =
(

1− p

100

)
, s =

(
1− q

100

)
,

we can reformulate the model more compactly as

Y = X1 · rX2 · sX3E .

The interesting parameters to estimate here would be r and s. For example, an r at 0.88
would imply an average value loss of 12 % per year of age for used cars.
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