
Log 708 - Chapter 5 Solutions

Halvard Arntzen

5.1

5.2
We will work again on the flat prices data, so we start by reading the file:
flats <- read.csv("M:/Undervisning/Undervisningh21/Data/flat_prices.csv")
head(flats)

## price area rooms standard situated town distcen age rent
## 1 1031 100 3 2 6 1 5 15 2051
## 2 1129 116 3 1 5 1 4 42 2834
## 3 1123 110 3 2 5 1 3 25 2468
## 4 607 59 2 3 5 1 6 25 1940
## 5 858 72 2 3 4 1 1 17 1611
## 6 679 64 2 2 3 1 3 17 2039

a. Making a scatterplot.
with(flats, plot(price, area,

main = "Price vs Area - all flats"))
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b. The following code should do the job.
#run regression
pricereg <- lm(price ~ area, data = flats)

#get coefficients
coef(pricereg)

## (Intercept) area
## 93.696532 9.129971
#get confidence interval
confint(pricereg)

## 2.5 % 97.5 %
## (Intercept) 43.637152 143.755912
## area 8.644193 9.615749

c. We can do this:
with(flats, plot(area, price, main = "Price vs Area - all flats"))
abline(pricereg, col = "blue", lwd = 2)
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d. The β1 parameter is generally describing the marginal effect on y of the x variable in a
regression. That means the average effect on y of increasing x with one unit. Here we
get the marginal square meter price, i.e. the price for one additional square meter. The
overall estimate is b1 = 9.13. Note that this is not identical to what is called “square
meter price” in estate markets. Then we talk about the ratio of price to area, and the
average in our sample is

with(flats, mean(price / area))

## [1] 10.16392

The two values would be equal only if the constant in the regression was 0.

e. We can look at the P -value for testing H0 : β1 = 0. This is practically 0 as shown by a
summary of the regression. Another key figure is the R2 here being about 0.90.

summary(pricereg)

##
## Call:
## lm(formula = price ~ area, data = flats)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -244.484 -67.769 1.346 59.306 218.057
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 93.6965 25.3321 3.699 0.000305 ***
## area 9.1300 0.2458 37.140 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 88.52 on 148 degrees of freedom
## Multiple R-squared: 0.9031, Adjusted R-squared: 0.9024
## F-statistic: 1379 on 1 and 148 DF, p-value: < 2.2e-16

f. As stated, we find R2 = 0.90.

g. We find Se = 88.52. This number describes prediction precision since e.g. 2Se approxi-
mates a 95% error margin.

h. We can insert x = 100 in the estimated equation. Then we get
pred <- 93.7 + 9.13*100
pred

## [1] 1006.7

As said, we can use 2Se for the error margin, so we can get a prediction interval as follows
pred + c(-1, 1) * 2 * 88.5

## [1] 829.7 1183.7

Alternatively, using the predict function, we can do
df <- data.frame(area = 100)
predict(pricereg, df, interval = "prediction")

## fit lwr upr
## 1 1006.694 831.1867 1182.201

We get essentially the same result.

5.3
Ok, my dataframe from the previous execise is called flats so we go
#make plot, col = "color", pch = "point character",
#we want solid dots (pch = 20)
with(flats, plot(area, price, col = town, pch = 20,

main = "Price vs Area"))
legend("topleft", legend=c("M", "K","A"), col = c(1, 2, 3), pch = 20)
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It appears that Ålesund and to some extent Molde has a slightly higher general level, while
the slope looks very similar for the three markets.

b. We will take the liberty to recode the town variable directly into a factor, which makes
the plot labels come out as text. This is best done with the help of a recode function
from the dplyr library. (Note that this is not necessary for solving the problem, just a
cosmetic upgrade :-))

library(ggplot2)

## Warning: package 'ggplot2' was built under R version 4.0.5
library(dplyr)

## Warning: package 'dplyr' was built under R version 4.0.5

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
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## intersect, setdiff, setequal, union
#redefine as character:
flats$town <- as.character(flats$town)
#recode as names
flats$town <- recode(flats$town, "1" = "Molde", "2" = "Krsund", "3" = "Alesund")
#convert to "factor" type
flats$town <- factor(flats$town)

# make plot, (now we do not need the "as.factor..." code suggested in the exercise.)
ggplot(flats, aes(x = area, y = price, color = town)) +

geom_point(size = 2) +
geom_smooth(method = lm, se = FALSE)

## `geom_smooth()` using formula 'y ~ x'
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The lines are almost parallell, and there is a vertical shift leaving Molde and Ålesund at a
generally higher price level, while the marginal square meter price is almost equal in all three
markets.

c. We can follow the suggested method. (adjusting for the fact that I made town a factor
above.) Note: Here it is important to use “==” in the logical expression.
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regMolde <- lm(price ~ area, data = subset(flats, town == "Molde"))
regKrsund <- lm(price ~ area, data = subset(flats, town == "Krsund"))
regAlesund <- lm(price ~ area, data = subset(flats, town == "Alesund"))

coef(regMolde)

## (Intercept) area
## 128.686384 9.167775
coef(regKrsund)

## (Intercept) area
## 49.780467 8.954979
coef(regAlesund)

## (Intercept) area
## 82.548319 9.950017

d. We get respectively 9.17, 8.95, 9.95 estimated for β1 in M, K, A.

e. The confidence intervals:
confint(regMolde)

## 2.5 % 97.5 %
## (Intercept) 60.284118 197.088651
## area 8.477614 9.857936
confint(regKrsund)

## 2.5 % 97.5 %
## (Intercept) -2.337113 101.898048
## area 8.461546 9.448412
confint(regAlesund)

## 2.5 % 97.5 %
## (Intercept) -5.887579 170.98422
## area 9.086685 10.81335

The confidence intervals tell us where we are likely to find the true parameter values in each
town. Since all pairs of intervals do overlap, we can not from this see hard evidence for real
differences in β1 values.

Optional. We can end this section with an example of how one could solve such problem
with some modern mechanisms in R. What happens above (and below) is a VERY common
task in data analysis. We have a data frame (flats). We want to look at subgroups (by
town). We want to do things to subgroups, i.e. compute mean values of variables, run a
regression (on the subsets) and so on. The “%>%” sign is called the “pipe”, and it works

7



by sending the result of calculations to the next step in a sequence. So below we start with
flats. Send it to group_by(town) which makes the subgroups. Then send the subgroups
to summarize which in this case do a few things: Compute min, mean and max price, the
number of flats, and report the b1 estimate from the above regression. Note that the “%>%”
is not part of base R, but will work after activating e.g. dplyr (as we did above. )
flats %>% group_by(town) %>%

summarize(minprice = min(price),
meanprice = mean(price),
maxprice = max(price),
N = n(),
b_1 = coef(lm(price ~ area))[2])

## # A tibble: 3 x 6
## town minprice meanprice maxprice N b_1
## <fct> <int> <dbl> <int> <int> <dbl>
## 1 Alesund 556 1065. 1698 39 9.95
## 2 Krsund 423 950. 1866 70 8.95
## 3 Molde 607 1008. 1625 41 9.17

This example is just meant to show how effectively R can be applied to more or less complex
data analysis tasks. It is not expected in general that Log 708 students can operate at this
level yet.

5.4
Ok, we need to read the data,
wdata <- read.csv("M:/Undervisning/Undervisningh21/Data/WaterWorld.csv")
head(wdata)

## X Tickets Price
## 1 1 1765 120
## 2 2 2344 90
## 3 3 2352 80
## 4 4 2055 95
## 5 5 1918 110
## 6 6 1311 135

the data seems to include a redundant column. We can leave it there or remove it e.g. as
follows
#remove column X
wdata <- subset(wdata, select = -X)
head(wdata)

## Tickets Price
## 1 1765 120
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## 2 2344 90
## 3 2352 80
## 4 2055 95
## 5 1918 110
## 6 1311 135

Another way to remove a column would be wdata <- wdata[ , -1] which selects everything
except the first column.

a. We are getting used to this now, so:
with(wdata, plot(Price, Tickets,

main = "Tickets sold depending on price",
pch = 20))

80 90 100 110 120 130

12
00

16
00

20
00

24
00

Tickets sold depending on price

Price

T
ic

ke
ts

From the scatterplot, a linear model looks reasonable. Economic theory usually suggest
a non-linear relation of the form y = Cx−α, where C, α are constants. (See chap. 8 in
compendium for more about this.) In many applications a linear function is a sufficiently
good approximation.

b. We estimate a linear model, and check the coefficients.
wreg <- lm(Tickets ~ Price, data = wdata)
coef(wreg)
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## (Intercept) Price
## 3998.09607 -20.21201

So in the form y = a− bx we use a = 3998, b = 20.21.

c. This is an estimated marginal effect of Price on Tickets so an additional NOK in
price is estimated to lead to about 20 less tickets sold.

d. “Mathematically” the value x = 0 leads to a prediction ŷ = a. However, all our data
have x values very far from 0, so a prediction so far outside of the observed range is
not valid. We can not use the estimated model at x = 0. Economical reasoning would
point to other “costs” when the price is 0, like waiting times for access, the facility
being overfull etc., where such generalized costs would limit the demand.

e. We can ask our regression object about it. Either a full summary:
summary(wreg)

##
## Call:
## lm(formula = Tickets ~ Price, data = wdata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -173.96 -60.45 -29.14 59.42 192.34
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3998.096 104.214 38.36 <2e-16 ***
## Price -20.212 1.047 -19.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 92.96 on 33 degrees of freedom
## Multiple R-squared: 0.9187, Adjusted R-squared: 0.9162
## F-statistic: 372.9 on 1 and 33 DF, p-value: < 2.2e-16

Or being more selective:
results <- summary(wreg)
results$r.squared

## [1] 0.9187001
results$sigma

## [1] 92.96295

Either way, we get R2 = 0.92, and Se = 92.7.
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f. We have the estimated equation, so we can just calculate

ŷ = 3998 − 20.21 · 110 = 1775 .

The approximate error margin would be 2Se = 2 · 92.7 = 185.4. We can also apply the
predict function to get the prediction along with a prediction interval.

testprice <- data.frame(Price = 110)
testpredict <- predict(wreg, testprice, interval = "prediction")
testpredict

## fit lwr upr
## 1 1774.775 1581.382 1968.169

From the difference between lwr and upr we find that R uses an error margin of 0.5 · (1968 −
1581) = 193.5. So, our approximation above is slightly too low, but still acceptable.

g. This is fairly straightforward, as each customer generates expected income x+ s and
expected cost c. Multiply this by expected number of customers (as given by y = a−bx)
We get expected operational income R(x) and operational cost C(x) as follows.

R(x) = y(x+ s) = (a− bx)(x+ s) = ax+ as− bx2 − bsx ,

C(x) = yc+ f = (a− bx)c+ f = ac− bcx+ f .

Then the operational profit is as follows

P (x) = R(x) − C(x)
= ax+ as− bx2 − bsx− (ac− bcx+ f)
= −bx2 + (a− bs+ bc)x+ as− ac− f

h. The profit is a quadratic function of x. We maximize it simply by solving the equation
P ′(x) = 0. This becomes

P ′(x) = −2bx+ (a− bs+ bc) = 0 ,

for which the only solution is x = x∗ as given in the exercise.

i. Using the expression for x∗ with the given values for s, c and f as well as previously
found estimates for a, b, we find the optimal price at x∗ = 96.40. The expected number
of customers with this price is 2050, and the expected profit is P (x∗) = 57826. Putting
the price higher, at x = 110 would lead to an expected loss of about 3740 NOK per
week.

j. The prices we consider as realistic is then rounding down to 95 or up to 100. Compared
to the optimum, we can expect to lose only 40 NOK per week at price 95, while we lose
260 NOK per week at price 100. That means x = 95 would be the suggested price.

11



We can round off here with an example of how we might use R to assist in such calculations
as in i. and j. We can use the function construction to define the profit as a function of a
variable x. Then this function can be used with various input, and we can make a plot. We
will use the general parameters a, b, ... as part of the function, to make it more general.
#set parameter values.
a <- 3998
b <- 20.21
s <- 10
c <- 5
f <- 150000
#define function "P(x)" as deduced in g.

P <- function(x) { -b*(xˆ2) + (a - b*s + b*c)*x + a*s - a*c - f }

#compute a sample of values for an x vector:
x <- seq(from = 85, to = 115, by = 5)
data.frame(price = x, tickets = a - b*x, profit = P(x))

## price tickets profit
## 1 85 2280.15 55213.5
## 2 90 2179.10 57014.5
## 3 95 2078.05 57805.0
## 4 100 1977.00 57585.0
## 5 105 1875.95 56354.5
## 6 110 1774.90 54113.5
## 7 115 1673.85 50862.0

So at the (close to) optimal price 95, we expect to sell 2078 tickets earning a profit of 57800
NOK.We can plot the function, like
curve(P(x), from = 40, to = 160, n = 100,

lwd = 2, col = "green",
main = "Profit as depending on ticket price",
sub = "Based on a demand regression model")

abline(h = 0, lwd = 2)
abline(v = 96.4, lty = 2)
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So, here we see the “whole story” in a picture, profits occur in a fairly wide price range, with
a theoretical optimum at 96.4 NOK, (dashed line)
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