
Log 708 - Chapter 4 Solutions

Halvard Arntzen

4.1
a. We can use the test statistic

T = x̄− 290
S/
√
n

and use N(0, 1) as null distribution. We calculate the observed value either with a
calculator or as here, using R

t_obs <- (319 - 290)/(100/sqrt(400))
t_obs

## [1] 5.8

The observed value is 5.8. Now, since the test is two-sided, we get the P-value as

P = P [T ≤ −5.8 or T ≥ 5.8] = 2 · P [T ≤ 5.8]

pval <- 2*pnorm(-5.8)
pval

## [1] 6.631492e-09

As expected from the observed T value, the P-value is practically 0. We reject H0 at the
given level.

b. For this we use the binomial test. We first note that

p̂ = 56
400 = 0.14

Here the test statistic and observed value becomes

Z
OBS

= p̂− 0.20√
0.20(1−0.20)

n

= 0.14− 0.20√
0.20(1−0.20)

400

= −3.0

The P-value is now P = 2 · P [Z ≤ −3.0] = 0.003, so again we reject the null hypothesis. The
proportion of cash paying customers is likely to be quite a bit lower than the suggested 0.20.
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c. Ok, by assumption in this part, we have 20% paying with cash and they pay on average
an estimated 319 NOK. On the other hand, 10% make cash withdrawals at average 400
NOK. I.e. on average, for each withdrawal (-400) there are two cash payments at 2 ·
319 = 638 NOK, so the balance should be OK. (Even with the estimated 14% paying
cash, we are OK, because each -400 withdrawal is countered by 1.4 · 319 = 447 NOK
in cash payment.)

4.2
We start by reading the data and look at top rows
tripdata <- read.csv("M:/Undervisning/Undervisningh21/Data/Trip_durations.csv")

head(tripdata)

## Duration Distance
## 1 12.5 2.74
## 2 33.5 13.60
## 3 33.1 10.99
## 4 37.0 10.31
## 5 18.3 4.93
## 6 29.3 8.15

a. We calculate n, x̄, Sx as follows. (Note, we can name the code chunks which makes
finding errors a little easier sometimes)

n <- nrow(tripdata)
x_bar <- mean(tripdata$Duration)
s_x <- sd(tripdata$Duration)
#print the three numbers as a vector (just to save space in output)
c(n, x_bar, s_x)

## [1] 200.000000 24.310500 6.835471

So n = 200, x̄ = 24.31, Sx = 6.84.

b. The test statistic should be
T = x̄− 24

S/
√
n

and the null distribution (the distribution assuming H0 is true) is a t-distribution with
df = n − 1 = 199. We can approximate this very well with the N(0, 1) distribution.
We can calculate the Tobs value:

t_obs <- (x_bar - 24)/ (s_x / sqrt(n))
t_obs

## [1] 0.6424039
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We get Tobs = 0.64. The test is two-sided, so we get the P-value as follows.

P = P [T ≤ −0.64 or T ≥ 0.64] = 2 ∗ P [T ≤ −0.64].

Using R and the N(0, 1) distribution, we get
p_value <- 2*pnorm(-0.64)
p_value

## [1] 0.5221726

The P -value is about 0.52 and with significance level α = 0.05 we can not reject the H0.

c. Now we can run with the t.test function from R.
durtest1 <- t.test(tripdata$Duration, mu = 24, alternative = "two.sided")
durtest1$statistic

## t
## 0.6424039

durtest1$p.value

## [1] 0.5213503

We see that we get almost identical values.

d. This means we simply have to change the constant in the test to 23 and repeat. The
test statistic is

t_obs <- (x_bar - 23)/ (s_x / sqrt(n))
t_obs

## [1] 2.711338

Using R and the N(0, 1) distribution, we get a new P -value:
p_value <- 2*pnorm(-2.71)
p_value

## [1] 0.006728321

And in this case we clearly reject H0. We can confirm this by testing directly with R:
durtest2 <- t.test(tripdata$Duration, mu = 23, alternative = "two.sided")
durtest2$statistic

## t
## 2.711338

durtest2$p.value

## [1] 0.007287267
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Again, the results are very close, and the same conclusion applies.

e. Since we are to seek evidence for µs > 10, this must be the alternative hypothesis H1,
and then we can have H0 : µs = 10 as the null hypothesis. This is then a one-sample t
test with a one-sided alternative, that the mean is greater than 10, so in R we can do

disttest <- t.test(tripdata$Distance, mu = 10, alternative = "greater")
#now we can chech the whole output.
disttest

##
## One Sample t-test
##
## data: tripdata$Distance
## t = 1.9522, df = 199, p-value = 0.02616
## alternative hypothesis: true mean is greater than 10
## 95 percent confidence interval:
## 10.06158 Inf
## sample estimates:
## mean of x
## 10.40115

We get Tobs = 1.95 and a resulting P -value at 0.026. This is below 0.05, so we reject H0.

f. One (out of many) ways to get a 95 confidence interval for a mean in R is to run the
t.test with a twosided alternative. Since this is the “default” setting for t.test, and
also the mu value is irrelevant for the confidence intervals, we can simply do

dur_test <- t.test(tripdata$Duration)
dist_test <- t.test(tripdata$Distance)

dur_test$conf.int

## [1] 23.35737 25.26363
## attr(,"conf.level")
## [1] 0.95

dist_test$conf.int

## [1] 9.995949 10.806351
## attr(,"conf.level")
## [1] 0.95

In the case of the duration variable, we see the interval containing 24, but not 23, which
explains the different results in b,c contra d. Regarding the distance variable, we see the
95% confidence interval reaching from practically 10.00 to 10.80, so indicating that the µs is
greater than 10.00, although we get a relatively weak evidence. We also see this since the
P -value in this case was not much lower than 0.05.
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g. Here we can do
with(tripdata, cor(Duration, Distance))

## [1] 0.9461513

with(tripdata, plot(Distance, Duration,
main = "Duration vs Distance for road trips."))
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The correlation is about 0.95, and the plot shows strong dependency between the variables.

4.3
a. We read the data in the ordinary way.

flats <- read.csv("M:/Undervisning/Undervisningh21/Data/flat_prices.csv")
head(flats)

## price area rooms standard situated town distcen age rent
## 1 1031 100 3 2 6 1 5 15 2051
## 2 1129 116 3 1 5 1 4 42 2834
## 3 1123 110 3 2 5 1 3 25 2468
## 4 607 59 2 3 5 1 6 25 1940
## 5 858 72 2 3 4 1 1 17 1611
## 6 679 64 2 2 3 1 3 17 2039
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From the (updated) exercise text, we find the encoding for town as (1, 2, 3) for (Molde,
Kristiansund, Ålesund).

we can use the tapply function to compute means in the towns as follows.
with(flats, tapply(price, town, mean))

## 1 2 3
## 1008.122 949.500 1064.538

We see some clear price differences on average.

b. We can do
with(flats, boxplot(price ~ town))
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This points clearly to the same differences, while also showing a slightly more widespread
distribution in Ålesund.

c. We want to test whether “true” mean prices are different, i.e. something like

H0 : µM = µK vs µM 6= µK

where the µ’s are means in Molde, Kristiansund. We use the t.test as suggested, after
excluding town 3 from the data. The “two.sided” is the default alternative, and need not be
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specified.
flats_MK <- subset(flats, town != 3)
with(flats_MK, t.test(price ~ town))

##
## Welch Two Sample t-test
##
## data: price by town
## t = 1.1339, df = 99.663, p-value = 0.2596
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -43.95448 161.19839
## sample estimates:
## mean in group 1 mean in group 2
## 1008.122 949.500

# or: t.test(flatsMK$price ~ flatsMK$town)

The relatively high P-value means we can not reject the null hypothesis.

For Ålesund, Kristiansund, we run the same procedure
flats_KA <- subset(flats, town != 1)
with(flats_KA, t.test(price ~ town))

##
## Welch Two Sample t-test
##
## data: price by town
## t = -1.9751, df = 82.279, p-value = 0.05161
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -230.8975312 0.8206081
## sample estimates:
## mean in group 2 mean in group 3
## 949.500 1064.538

Supposing the significance level is 0.05, the P-value here is at the limit, but still does not
lead to a rejected null hypothesis.

d. The variable is called area. We can use the method from a).
with(flats, tapply(area, town, mean))

## 1 2 3
## 95.92683 100.47143 98.69231

So, on average the sample has somewhat different sized flats.
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e. For example,
with(flats, cor(price, area))

## [1] 0.9503176

Strong correlation, at 0.95. In this connection, showing a scatterplot does not hurt.
with(flats, plot(area, price))
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That looks more or less as expected.

f. We can do the computation as follows. Square meter prices are x1000 NOK
flats$sqmprice <- flats$price / flats$area
head(flats)

## price area rooms standard situated town distcen age rent sqmprice
## 1 1031 100 3 2 6 1 5 15 2051 10.310000
## 2 1129 116 3 1 5 1 4 42 2834 9.732759
## 3 1123 110 3 2 5 1 3 25 2468 10.209091
## 4 607 59 2 3 5 1 6 25 1940 10.288136
## 5 858 72 2 3 4 1 1 17 1611 11.916667
## 6 679 64 2 2 3 1 3 17 2039 10.609375

g. So, we do a t test again. Note, we need to recalculate the subset to include the sqmprice
variable. So we can do
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flats_MK <- subset(flats, town != 3)
with(flats_MK, t.test(sqmprice ~ town))

##
## Welch Two Sample t-test
##
## data: sqmprice by town
## t = 6.6785, df = 75.642, p-value = 3.581e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.7935811 1.4681197
## sample estimates:
## mean in group 1 mean in group 2
## 10.63212 9.50127

The P-value is almost 0, and much less than 0.05, so we reject the null hypothesis. We
conclude that square meter prices are significantly higher in Molde than in Kristiansund.

h. When comparing nominal prices, we do not take into account that while the prices
were on average higher in Molde, the flats were also smaller in Molde. So, comparing
nominal prices can be misleading when we don’t control for the fact that sizes differ on
average. Looking at square meter prices is one way to make a more “fair” comparison
as the size is taken into account.

i. So, we can make a few more subsets, and run similar tests:
flats_KA <- subset(flats, town != 1)
flats_MA <- subset(flats, town != 2)

with(flats_KA, t.test(sqmprice ~ town))

##
## Welch Two Sample t-test
##
## data: sqmprice by town
## t = -8.0705, df = 72.688, p-value = 1.066e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.695627 -1.023977
## sample estimates:
## mean in group 2 mean in group 3
## 9.50127 10.86107

with(flats_MA, t.test(sqmprice ~ town))

##
## Welch Two Sample t-test
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##
## data: sqmprice by town
## t = -1.1576, df = 77.974, p-value = 0.2505
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.6226931 0.1647894
## sample estimates:
## mean in group 1 mean in group 3
## 10.63212 10.86107

We see H0 rejected when comparing Kristiansund and Ålesund, while not when comparing
Molde and Ålesund.

As a final remark, when working with categorical variables like town here, it can be worthwile
to convert to a “factor”. Some code for this is shown in section 7.5 in the compendium. If we
do this and rerun question a, we get
with(flats, tapply(price, town, mean))

## Molde Krsund Alesund
## 1008.122 949.500 1064.538

So instead of constantly trying to remember what was 1, 2, 3 - we now get the actual names
in the output.
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