
Log 708 - Chapter 4 Solutions

Halvard Arntzen

4.1

a. We can use the test statistic
T = x̄ − 290

S/
√

n

and use N(0, 1) as null distribution. We calculate the observed value either with a
calculator or as here, using R

t_obs <- (319 - 290)/(100/sqrt(400))
t_obs

[1] 5.8

The observed value is 5.8. Now, since the test is two-sided, we get the P-value as

P = P [T ≤ −5.8 or T ≥ 5.8] = 2 · P [T ≤ 5.8]

pval <- 2*pnorm(-5.8)
pval

[1] 6.631492e-09

As expected from the observed T value, the P-value is practically 0. We reject H0 at the
given level.

b. For this we use the binomial test. We first note that

p̂ = 56
400 = 0.14

Here the test statistic and observed value becomes

Z
OBS

= p̂ − 0.20√
0.20(1−0.20)

n

= 0.14 − 0.20√
0.20(1−0.20)

400

= −3.0

1

The P-value is now P = 2 · P [Z ≤ −3.0] = 0.003, so again we reject the null hypothesis.
The proportion of cash paying customers is likely to be quite a bit lower than the suggested
0.20.

c. Ok, by assumption in this part, we have 20% paying with cash and they pay on average
an estimated 319 NOK. On the other hand, 10% make cash withdrawals at average
400 NOK. I.e. on average, for each withdrawal (-400) there are two cash payments at 2
· 319 = 638 NOK, so the balance should be OK. (Even with the estimated 14% paying
cash, we are OK, because each -400 withdrawal is countered by 1.4 · 319 = 447 NOK
in cash payment.)

4.2

We start by reading the data and look at top rows

tripdata <- read.csv("M:/Undervisning/Undervisningh21/Data/Trip_durations.csv")

head(tripdata)

Duration Distance
1 12.5 2.74
2 33.5 13.60
3 33.1 10.99
4 37.0 10.31
5 18.3 4.93
6 29.3 8.15

a. We calculate n, x̄, Sx as follows. (Note, we can name the code chunks which makes
finding errors a little easier sometimes)

n <- nrow(tripdata)
x_bar <- mean(tripdata$Duration)
s_x <- sd(tripdata$Duration)
#print the three numbers as a vector (just to save space in output)
c(n, x_bar, s_x)

[1] 200.000000 24.310500 6.835471

So n = 200, x̄ = 24.31, Sx = 6.84.

2

b. The test statistic should be
T = x̄ − 24

S/
√

n

and the null distribution (the distribution assuming H0 is true) is a t-distribution with
df = n − 1 = 199. We can approximate this very well with the N(0, 1) distribution.
We can calculate the Tobs value:

t_obs <- (x_bar - 24)/ (s_x / sqrt(n))
t_obs

[1] 0.6424039

We get Tobs = 0.64. The test is two-sided, so we get the P-value as follows.

P = P [T ≤ −0.64 or T ≥ 0.64] = 2 ∗ P [T ≤ −0.64].

Using R and the N(0, 1) distribution, we get

p_value <- 2*pnorm(-0.64)
p_value

[1] 0.5221726

The P -value is about 0.52 and with significance level α = 0.05 we can not reject the H0.

c. Now we can run with the t.test function from R.

durtest1 <- t.test(tripdata$Duration, mu = 24, alternative = "two.sided")
durtest1$statistic

t
0.6424039

durtest1$p.value

[1] 0.5213503

We see that we get almost identical values.

d. This means we simply have to change the constant in the test to 23 and repeat. The
test statistic is

3

t_obs <- (x_bar - 23)/ (s_x / sqrt(n))
t_obs

[1] 2.711338

Using R and the N(0, 1) distribution, we get a new P -value:

p_value <- 2*pnorm(-2.71)
p_value

[1] 0.006728321

And in this case we clearly reject H0. We can confirm this by testing directly with R:

durtest2 <- t.test(tripdata$Duration, mu = 23, alternative = "two.sided")
durtest2$statistic

t
2.711338

durtest2$p.value

[1] 0.007287267

Again, the results are very close, and the same conclusion applies.

e. Since we are to seek evidence for µs > 10, this must be the alternative hypothesis H1,
and then we can have H0 : µs = 10 as the null hypothesis. This is then a one-sample t
test with a one-sided alternative, that the mean is greater than 10, so in R we can do

disttest <- t.test(tripdata$Distance, mu = 10, alternative = "greater")
#now we can chech the whole output.
disttest

##
One Sample t-test
##
data: tripdata$Distance
t = 1.9522, df = 199, p-value = 0.02616
alternative hypothesis: true mean is greater than 10
95 percent confidence interval:
10.06158 Inf
sample estimates:
mean of x
10.40115

4

We get Tobs = 1.95 and a resulting P -value at 0.026. This is below 0.05, so we reject H0.

f. One (out of many) ways to get a 95 confidence interval for a mean in R is to run the
t.test with a twosided alternative. Since this is the “default” setting for t.test, and
also the mu value is irrelevant for the confidence intervals, we can simply do

dur_test <- t.test(tripdata$Duration)
dist_test <- t.test(tripdata$Distance)

dur_test$conf.int

[1] 23.35737 25.26363
attr(,"conf.level")
[1] 0.95

dist_test$conf.int

[1] 9.995949 10.806351
attr(,"conf.level")
[1] 0.95

In the case of the duration variable, we see the interval containing 24, but not 23, which
explains the different results in b,c contra d. Regarding the distance variable, we see the
95% confidence interval reaching from practically 10.00 to 10.80, so indicating that the µs

is greater than 10.00, although we get a relatively weak evidence. We also see this since the
P -value in this case was not much lower than 0.05.

g. Here we can do

with(tripdata, cor(Duration, Distance))

[1] 0.9461513

with(tripdata, plot(Distance, Duration,
main = "Duration vs Distance for road trips."))

5

4 6 8 10 12 14 16

10
15

20
25

30
35

40
Duration vs Distance for road trips.

Distance

D
ur

at
io

n

The correlation is about 0.95, and the plot shows strong dependency between the variables.

4.3

a. We read the data in the ordinary way.

flats <- read.csv("M:/Undervisning/Undervisningh21/Data/flat_prices.csv")
head(flats)

price area rooms standard situated town distcen age rent
1 1031 100 3 2 6 1 5 15 2051
2 1129 116 3 1 5 1 4 42 2834
3 1123 110 3 2 5 1 3 25 2468
4 607 59 2 3 5 1 6 25 1940
5 858 72 2 3 4 1 1 17 1611
6 679 64 2 2 3 1 3 17 2039

From the (updated) exercise text, we find the encoding for town as (1, 2, 3) for (Molde,
Kristiansund, Ålesund).
we can use the tapply function to compute means in the towns as follows.

6

with(flats, tapply(price, town, mean))

1 2 3
1008.122 949.500 1064.538

We see some clear price differences on average.

b. We can do

with(flats, boxplot(price ~ town))

1 2 3

50
0

10
00

15
00

town

pr
ic

e

This points clearly to the same differences, while also showing a slightly more widespread
distribution in Ålesund.

c. We want to test whether “true” mean prices are different, i.e. something like

H0 : µM = µK vs µM ̸= µK

where the µ’s are means in Molde, Kristiansund. We use the t.test as suggested, after
excluding town 3 from the data. The “two.sided” is the default alternative, and need not be
specified.

7

flats_MK <- subset(flats, town != 3)
with(flats_MK, t.test(price ~ town))

##
Welch Two Sample t-test
##
data: price by town
t = 1.1339, df = 99.663, p-value = 0.2596
alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
95 percent confidence interval:
-43.95448 161.19839
sample estimates:
mean in group 1 mean in group 2
1008.122 949.500

or: t.test(flatsMK$price ~ flatsMK$town)

The relatively high P-value means we can not reject the null hypothesis.
For Ålesund, Kristiansund, we run the same procedure

flats_KA <- subset(flats, town != 1)
with(flats_KA, t.test(price ~ town))

##
Welch Two Sample t-test
##
data: price by town
t = -1.9751, df = 82.279, p-value = 0.05161
alternative hypothesis: true difference in means between group 2 and group 3 is not equal to 0
95 percent confidence interval:
-230.8975312 0.8206081
sample estimates:
mean in group 2 mean in group 3
949.500 1064.538

Supposing the significance level is 0.05, the P-value here is at the limit, but still does not
lead to a rejected null hypothesis.

d. The variable is called area. We can use the method from a).

8

with(flats, tapply(area, town, mean))

1 2 3
95.92683 100.47143 98.69231

So, on average the sample has somewhat different sized flats.

e. For example,

with(flats, cor(price, area))

[1] 0.9503176

Strong correlation, at 0.95. In this connection, showing a scatterplot does not hurt.

with(flats, plot(area, price))

50 100 150 200

50
0

10
00

15
00

area

pr
ic

e

That looks more or less as expected.

f. We can do the computation as follows. Square meter prices are x1000 NOK

9

flats$sqmprice <- flats$price / flats$area
head(flats)

price area rooms standard situated town distcen age rent sqmprice
1 1031 100 3 2 6 1 5 15 2051 10.310000
2 1129 116 3 1 5 1 4 42 2834 9.732759
3 1123 110 3 2 5 1 3 25 2468 10.209091
4 607 59 2 3 5 1 6 25 1940 10.288136
5 858 72 2 3 4 1 1 17 1611 11.916667
6 679 64 2 2 3 1 3 17 2039 10.609375

g. So, we do a t test again. Note, we need to recalculate the subset to include the
sqmprice variable. So we can do

flats_MK <- subset(flats, town != 3)
with(flats_MK, t.test(sqmprice ~ town))

##
Welch Two Sample t-test
##
data: sqmprice by town
t = 6.6785, df = 75.642, p-value = 3.581e-09
alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
95 percent confidence interval:
0.7935811 1.4681197
sample estimates:
mean in group 1 mean in group 2
10.63212 9.50127

The P-value is almost 0, and much less than 0.05, so we reject the null hypothesis. We
conclude that square meter prices are significantly higher in Molde than in Kristiansund.

h. When comparing nominal prices, we do not take into account that while the prices
were on average higher in Molde, the flats were also smaller in Molde. So, comparing
nominal prices can be misleading when we don’t control for the fact that sizes differ on
average. Looking at square meter prices is one way to make a more “fair” comparison
as the size is taken into account.

i. So, we can make a few more subsets, and run similar tests:

flats_KA <- subset(flats, town != 1)
flats_MA <- subset(flats, town != 2)

with(flats_KA, t.test(sqmprice ~ town))

10

##
Welch Two Sample t-test
##
data: sqmprice by town
t = -8.0705, df = 72.688, p-value = 1.066e-11
alternative hypothesis: true difference in means between group 2 and group 3 is not equal to 0
95 percent confidence interval:
-1.695627 -1.023977
sample estimates:
mean in group 2 mean in group 3
9.50127 10.86107

with(flats_MA, t.test(sqmprice ~ town))

##
Welch Two Sample t-test
##
data: sqmprice by town
t = -1.1576, df = 77.974, p-value = 0.2505
alternative hypothesis: true difference in means between group 1 and group 3 is not equal to 0
95 percent confidence interval:
-0.6226931 0.1647894
sample estimates:
mean in group 1 mean in group 3
10.63212 10.86107

We see H0 rejected when comparing Kristiansund and Ålesund, while not when comparing
Molde and Ålesund.
As a final remark, when working with categorical variables like town here, it can be worthwile
to convert to a “factor”. Some code for this is shown in section 7.5 in the compendium. If
we do this and rerun question a, we get

with(flats, tapply(price, town, mean))

Molde Krsund Alesund
1008.122 949.500 1064.538

So instead of constantly trying to remember what was 1, 2, 3 - we now get the actual names
in the output.

11

4.4

a. If flats is not already in your working environment, read it from file.

flats <- read.csv("M:/Undervisning/Undervisningh21/Data/flat_prices.csv")
head(flats)

Following the suggested way in the exercise, we go as follows.

#make new variable indicating small/not-small values
flats$small <- (flats$rooms < 3)

#count small/not-small
countsm <- table(flats$small)
countsm

##
FALSE TRUE
91 59

b. Since we want the TRUE count to be in position 1, when using the binom.test function,
we can “reverse” the count vector for example as follows, and then do the test.

countsm <- countsm[2:1]
testresult <- binom.test(countsm, p = 0.5, alternative = "less")

Then we can for example inspect the whole testresult object:

testresult

##
Exact binomial test
##
data: countsm
number of successes = 59, number of trials = 150, p-value = 0.005561
alternative hypothesis: true probability of success is less than 0.5
95 percent confidence interval:
0.0000000 0.4634347
sample estimates:
probability of success
0.3933333

12

From this we see that we get the correct count of 59 “successes”. (We always want p to be
the “success probability” even though the word “success” is not always very meaningful, like
here. . .)
Further, we find p̂ = 0.393, which is on the critical side. We get the p-value about 0.006,
so we clearly reject H0. We find strong evidence that the proportion of “small” flats is less
than 0.5 (or 50%).

4.5

We continue with the same dataframe flats as above.

a. One typical reason why a variable Y can be approximately normal, is when Y can be
thought of as the sum of many relatively small (or equal-sized) independent factors,
like

Y = X1 + X2 + X3 + · · · + XN

So on the one hand, we could argue that the flat price is affected by a lot of different
factors, which ultimately lead to something like a normal distribution for prices of a
bunch of flats.

On the other hand, we may suspect that there is a particular “luxury” effect, where a few
flats are considerably more expensive than the main bulk of flats, and that there is no
corresponding negative effect, since flats in a horrible state would typically be upgraded
to a reasonable level before sale. So a guess can be that the prices are a bit right skewed,
while you remove the most expensive ones, the remaining “ordinary” flats might have almost
normally distributed prices. Since we have the data, we can go on and have a look:

b. Here we are going to lump all prices together, ignoring the fact that we have three
separate markets involved. We can make a normal-plot, and run the Shapiro-Wilk
test. By the way, it also makes sense to look at a histogram, to get a general feel for
how prices are distributed.

par(mfrow=c(1,2)) # allow side by side plots
with(flats, hist(price, breaks = 20,

main = "Observed price distribution"))

with(flats, qqnorm(price,
main="Normal probability plot for flat prices")) # normal plot

13

Observed price distribution

price

F
re

qu
en

cy

500 1000 1500

0
5

10
15

20
25

−2 −1 0 1 2
50

0
10

00
15

00

Normal probability plot for flat prices

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

par(mfrow=c(1,1)) # reset plotting parameters

(Note that the code above could also be written hist(flats$price, ...) and so on. the
use of with(..) is a matter of “taste”.
The plots reveal some tendency of right skewedness, as suggested in a. We can do a test to
see whether the effect is significant, so as to reject the H0 stating that data come from a
normal distribution.

with(flats, shapiro.test(price)) #or shapiro.test(flats$price)

##
Shapiro-Wilk normality test
##
data: price
W = 0.97897, p-value = 0.02126

The p-value is certainly below 0.05, so we will reject H0 in this case.

c. The lumping together of prices from separate markets can be “dangerous” in this
setting. Imagine for example that general price levels were much higher in one town,

14

but still normally distributed within each town. Then, the mixed price distribution
can be very different from normal. We can show some experiments verifying this after
answering the questions in the exercise. For the plots and testing town-wise, we can
do as follows. Note that the tapply function does not work optimally with plots, as
some additional output is created. We can stop this by putting the command inside
innvisible(...)

par(mfrow=c(1,3))
invisible(with(flats, tapply(price, town, qqnorm)))

−2 −1 0 1 2

60
0

80
0

10
00

12
00

14
00

16
00

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−2 −1 0 1 2

50
0

10
00

15
00

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−2 −1 0 1 2

60
0

80
0

10
00

12
00

14
00

16
00

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

par(mfrow=c(1,1))

Here is a case where the ggplot2 package offers superior functionality:

library(ggplot2)

Warning: package ’ggplot2’ was built under R version 4.1.3

15

ggplot(flats, aes(sample = price, color = town)) + geom_qq()

400

800

1200

1600

−2 −1 0 1 2
theoretical

sa
m

pl
e

town

Molde

Krsund

Alesund

#or

ggplot(flats, aes(sample = price)) + geom_qq() + facet_wrap(~town)

16

Molde Krsund Alesund

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

400

800

1200

1600

theoretical

sa
m

pl
e

We see the curving tendency in each town also. Let’s test within towns.

with(flats, tapply(price, town, shapiro.test))

$Molde
##
Shapiro-Wilk normality test
##
data: X[[i]]
W = 0.97683, p-value = 0.5577
##
##
$Krsund
##
Shapiro-Wilk normality test
##
data: X[[i]]
W = 0.96312, p-value = 0.03732
##
##
$Alesund

17

##
Shapiro-Wilk normality test
##
data: X[[i]]
W = 0.95503, p-value = 0.1215

Only in the case of Kristiansund can we now reject the H0. The most likely explanation
for not being able to reject H0 in Molde, Ålesund is simply that the sample sizes are much
smaller when we disaggregate the data, and so we will need a stronger effect for it to be
significant. Based on the qq-plots, we still should suspect that the data are not perfectly
normal in any town, but that the deviation from normal is not dramatic.

d. We could just repeat the process with sqmprice.

overall picture: We look first at the aggregated price data.

par(mfrow=c(1,2)) # allow side by side plots
with(flats, hist(sqmprice, breaks = 20,

main = "Observed sqm \n price distribution"))

with(flats, qqnorm(sqmprice,
main="Normal probability plot \n for sqm prices")) # normal plot

Observed sqm
 price distribution

sqmprice

F
re

qu
en

cy

8 10 12 14

0
5

10
15

20
25

30

−2 −1 0 1 2

8
10

12
14

Normal probability plot
 for sqm prices

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

18

par(mfrow=c(1,1)) # reset plotting parameters

Overall, there are a few flats sticking out on high and low square meter prices.

with(flats, shapiro.test(sqmprice))

##
Shapiro-Wilk normality test
##
data: sqmprice
W = 0.97183, p-value = 0.003555

So, the results point clearly to square meter prices not being normal when considering the
combined markets.

disaggregated analysis. We take a look within towns. “Cheating” by using ggplot, we
get this:

library(ggplot2)
ggplot(flats, aes(sample = sqmprice, color = town)) + geom_qq()

7

9

11

13

15

−2 −1 0 1 2
theoretical

sa
m

pl
e

town

Molde

Krsund

Alesund

19

Notably, a single flat in Molde is remarkably high, while 3 in Kristiansund fall considerably
below the general level there. Running the Shapiro-Wilk test within towns:

with(flats, tapply(sqmprice, town, shapiro.test))

$Molde
##
Shapiro-Wilk normality test
##
data: X[[i]]
W = 0.76513, p-value = 1.088e-06
##
##
$Krsund
##
Shapiro-Wilk normality test
##
data: X[[i]]
W = 0.97158, p-value = 0.112
##
##
$Alesund
##
Shapiro-Wilk normality test
##
data: X[[i]]
W = 0.98426, p-value = 0.8505

In light of this, it is only in Molde that the test clearly rejects the H0. One could further
suspect that this is due to the single outlier flat that we see. We can check this, by running
the test for Molde without that flat, e.g. as follows.

M <- max(flats$sqmprice) # find the maximum sqm price

#make new dataframe with Molde flats of lower than max sqmprice:
df <- subset(flats, town = "Molde" & sqmprice < M)
#test again
with(df, shapiro.test(sqmprice))

##
Shapiro-Wilk normality test
##
data: sqmprice
W = 0.97183, p-value = 0.003555

In fact, the pattern persists. We still reject H0.

20

Addendum: The dangers of aggregated data.

Since this last exercise is about aggregated data, we may have a look at some general problems
that can appear when aggregating data from possibly different probability distributions.
Let’s stick to the example of three towns A, B, C, and assume the prices within each town
is normally distributed, with a standard deviation of 100, but that the mean prices are (say)
900, 1000 and 1300 respectively. Suppose further that exactly 1/3 of the flats are in each
town. We can first make a picture of the three individual distributions.

0.000

0.001

0.002

0.003

0.004

600 800 1000 1200 1400 1600
x

va
lu

e

town

A

B

C

Price densities for A, B, C.

Now look at the mixed density. The interpretation of this is that Y is the price of a randomly
selected flat from A, B or C, and then we get a particular probability density for Y . The
important thing to note is that this can be very different from a normal density, even though
the price within each city is normal. With the particular setup here, we get the following.

21

0.0000

0.0005

0.0010

0.0015

0.0020

600 800 1000 1200 1400 1600
x

va
lu

e
Mixed density for all towns.

So, the basic thing we can learn here, is that a variable can be normally distributed within
each group (town), but when we mix the groups and look at the same variable, it will not
usually be normal, unless the mean and standard deviation are similar in value.
Precisely the same thing can of course happen when we look at data, so suppose we now
sample a set of values from each of the distributions above (A, B, C). Then we would expect
to find nice qqplots within each town. On the other hand, the mixed data should reveal a
non-normal distribution. Let’s try.

#make data frame DFS with 100 samples from each town:
set.seed(1232) #always set seed before simulations
DFS <- data.frame(A = rnorm(100, mean=900, sd=100),

B = rnorm(100, mean=1000, sd=100),
C = rnorm(100, mean=1300, sd=100))

#have a look
head(DFS)

A B C
1 1052.8871 1012.7667 1188.818
2 1030.7375 1067.6928 1284.532
3 991.6349 955.6578 1304.833
4 845.6964 1190.7237 1330.149

22

5 816.5266 1100.4579 1265.413
6 695.6770 965.9092 1329.912

#stack the columns in DFS (ggplot likes stacked data)
DFS2 <- pivot_longer(DFS, cols=A:C, names_to="town")

#have a look
head(DFS2)

A tibble: 6 x 2
town value
<chr> <dbl>
1 A 1053.
2 B 1013.
3 C 1189.
4 A 1031.
5 B 1068.
6 C 1285.

Now we can make qqplots for each town.

ggplot(DFS2, aes(sample = value, color = town)) + geom_qq()

600

800

1000

1200

1400

1600

−2 −1 0 1 2
theoretical

sa
m

pl
e

town

A

B

C

23

And we can do the Shapiro-test within each town.

with(DFS2, tapply(value, town, shapiro.test))

$A
##
Shapiro-Wilk normality test
##
data: X[[i]]
W = 0.98366, p-value = 0.2531
##
##
$B
##
Shapiro-Wilk normality test
##
data: X[[i]]
W = 0.99054, p-value = 0.7082
##
##
$C
##
Shapiro-Wilk normality test
##
data: X[[i]]
W = 0.99411, p-value = 0.9451

In each town, the null hypothesis survives the test.
Now, let’s sample 100 prices from the whole set of data. This can be done by sampling 100
random numbers from 1-300, and pick the corresponding prices from DFS2.

set.seed(1212)
indices <- sample(1:300, 100)
aggregate_sample <- DFS2[indices,]
head(aggregate_sample)

A tibble: 6 x 2
town value
<chr> <dbl>
1 C 1420.
2 C 1345.
3 A 819.
4 A 692.
5 C 1285.
6 C 1270.

24

ggplot(aggregate_sample, aes(sample = value)) + geom_qq() +
labs(title="Normal plot for aggregate data.")

800

1000

1200

1400

−2 −1 0 1 2
theoretical

sa
m

pl
e

Normal plot for aggregate data.

So, as we see the normal plot for aggregate data shows clear deviations from normality. We
can finish this discussion with a final Shapiro test:

with(aggregate_sample, shapiro.test(value))

##
Shapiro-Wilk normality test
##
data: value
W = 0.94609, p-value = 0.0004628

So, based on the aggregate data, we seemingly find “evidence” that the prices are not normal.
The moral of this story is something like this: When we group together values of a variable
that are recorded in (say) different towns, we risk to ignore systematic differences between
the towns. Implicitly assuming that values are homogeneously distributed across towns can
lead to seriously flawed conclusions regarding the variable in focus. Such problems extend
way beyond the question about normal or non-normal distribution. We will get back to this
in chapter 6, in a regression setting, where it is related to the concept of “omission bias”.

25

	4.1
	4.2
	4.3
	4.4
	4.5
	Addendum: The dangers of aggregated data.

