
Log 708 - Chapter 3 Solutions

Halvard Arntzen

These are suggested solutions to chapter 3 exercises. In many cases, R offers different ways
of doing things, so this is not a list of “definitive” answers. And of course, even though a
major part of these exercises is “watching videos”, we do not watch the videos for you :-)

3.1
This is something you just have to do on your own!

3.2
b.

#keyboard shortcut CTRL+ENTER (Used with the script editor)
Executes code currently at the cursor (Or selected part of code)

#keyboard shortcut CTRL+C
Copies selected code. Very useful.

#keyboard shortcut CTRL+V
Pastes copied code. Equally useful.

#keyboard shortcut CTRL+Z (works in the editor only)
UNDO previous keystrokes. Works sequentially backwards to undo previous
steps. (Actually works in the console to some extent also.)

#Arrow up / down (works differently in editor and console)
In editor: Move cursor up/down.
In console: Review previously executed commands.

#ALT+"-"
In script files and in console: Insert assignment operator " <- ".

d.

1

assign your year of birth to a variable "year"
year <- 1968

make a vector "date" = (year, month, day) with your date of birth.
date <- c(1968, 9, 21)

make a variable "a" that contains the value (2 + 3)*(10 - 3)ˆ2.
a <- (2 + 3)*(10 - 3)ˆ2

#assign the value 10 to variable "b" and let z be the sum of a and b.
b <- 10
z <- a + b

#assign the value 1 to "a", 2 to "b", 3 to "c" and 1 to "d".
a <- 1
b <- 2
c <- 3
d <- 1

#test whether "a" is equal to "b".
a == b

[1] FALSE
#test whether "a" is not equal to "c".
a != c

[1] TRUE
#test whether "a" PLUS "b" is equal to "c" OR equal to "d".
#(here it is safest to use parentheses, and by the way, I think there is
#an error in the video here. I.e we can not write
(a+b) == c | d as is suggested there.

((a+b) == c) | ((a+b) == d)

[1] TRUE
#assign the numbers 2,3,4 and 5 to "e". (i.e. make a vector)
e <- c(2, 3, 4, 5)

#assign the numbers 12,13,14 and 15 to "f".
f <- c(12,13,14,15)

#test whether "a" is element in "e".
a %in% e

2

[1] FALSE
#test whether "a" is element in "f".
a %in% f

[1] FALSE
#make a vector y that contains the product by b of all elements in f.
#(so, y should be (24, 26, ...), but how to do it most easily with R
#given that you already defined b and f as variables?)
y <- b*f

#show that "f" MINUS 10 is "e". Use the logical comparison "==" in R.
(f - 10) == e

[1] TRUE TRUE TRUE TRUE
#run ls() in the console to see your workspace variables. See the #environment #window (upper right in Rstudio) containing the same, and #showing some info.
ls()

[1] "a" "b" "c" "d" "date" "e" "f" "y" "year" "z"
#run rm(list = ls()) to clear the workspace. Now run ls() again. You can
#run the whole R script to recreate the workspace variables. (CTRL+SHIFT+ENTER)
rm(list=ls())

#Write ?sum at the console. What happens?
#?sum
we get the internal help info about the "sum" function

#Create a vector z with 10-15 arbitrary numbers between 0 and 10.
z <- c(5, 4, 5, 3, 7, 5, 7, 8, 0, 10, 1, 3)

#write hist(z). What happens?
hist(z)

3

Histogram of z

z

F
re

qu
en

cy

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

#In the plots-tab click "zoom". What happens?
-> the figure is magnified

3.3

#make a vector z of 5-10 arbitary numbers.

z <- c(5, 67, 33, 43, 41, 55) # or try z <- sample(1:100, 10)

#Find the sum of elements in z
sum(z)

[1] 244
#Find the average value of z
mean(z)

[1] 40.66667
#Find the median value of z
median(z)

[1] 42

4

#find the mean value of zˆ2
mean(zˆ2)

[1] 2026.333
#make a vector z2 which starts with z but has NA as an
#additional element. (hint, c(x, y) will put vector y
after vector x in a new vector)
z2 <- c(z, NA)

#try mean(z2)
mean(z2)

[1] NA
#try mean(z2, na.rm = TRUE)
mean(z2, na.rm = T)

[1] 40.66667
#In the script editor, write "M <- med". What happens? Hit TAB. What happens?

#We get a list of options starting with "med". TAB selects one option.

#At the console, write "fact", and use this to find "factorial(10)"
factorial(10)

[1] 3628800
#which is 10*9*8*...3*2*1. Find approximately factorial(100).
factorial(100)

[1] 9.332622e+157

100! is a number starting 9 332 6 which has 157 digits.

3.4
a.

clear your workspace. (rm(...) see above if you forgot)
rm(list = ls())

#Use ":" to make a vector x = 4, 5, 6, 7, 8, 9, 10 and a
#vector y = 100, 99, 98,, 3, 2, 1, 0.

x <- 4:10
y <- 100:0

5

find the length of y.
length(y)

[1] 101
Use "seq" to make a vector z = 1, 4, 7, 10 and a vector
w = 10, 8, 6, 4, 2, 0
z <- seq(from=1, to=10, by=3)
w <- seq(from=10, to=0, by=-2)

Use "rep" to make a vector x = 1, 2, 3, 1, 2, 3, 1, 2, 3
rep(c(1,2,3), 3)

[1] 1 2 3 1 2 3 1 2 3
Use c(...) to make a vector y that starts with z and ends with w
c(z, w)

[1] 1 4 7 10 10 8 6 4 2 0
Make a vector f1 with 5 uniformly distributed random numbers
between 0 and 10.
f1 <- runif(5, min=0, max=10)

Make a vector f2 with 5 uniformly distributed random numbers
between 0 and 10. Is f1 == f2?
f2 <- runif(5, min=0, max=10)

f1==f2

[1] FALSE FALSE FALSE FALSE FALSE
How can we ensure that the randomly generated numbers are
the same each time we run our code? And why can this be of
importance? Make a small sequence of code that ensures
reproducible random generation of 5 uniform numbers as above.

This can be important if we have some experiment or simulation that we want to reproduce
exactly. Also, if our code includes random numbers, and produces an error, it can be very
difficult to track the error if we can not reproduce exactly the random input. To ensure the
same random sequence in repetitions, we use set.seed(...)
#set seed with some arbitrary number.
set.seed(12121)
f1 <- runif(5, min=0, max=10)

set.seed(12121)
f2 <- runif(5, min=0, max=10)

6

f1 == f2

[1] TRUE TRUE TRUE TRUE TRUE

Now f1 and f2 are identical.

b.
Define the vector a as follows
a <- c(3, 5, 7, 9, 1, 1)

extract the third element of a
a[3]

[1] 7
extract the vector of all elements of a except the third
a[-3]

[1] 3 5 9 1 1
extract elements in position 2 and 4
a[c(2,4)]

[1] 5 9
extract all elements of a that are greater than 3
a[(a>3)]

[1] 5 7 9
try head(a, 3) and tail(a, 3). What do you get?
head(a, 3)

[1] 3 5 7
tail(a, 3)

[1] 9 1 1
change the first element of a to value 1.
a[1] <- 1

change the second and third element to 0
a[c(2,3)] <- 0

Set a back as originally defined. Let b be the vector a backwards
hint: Google
a <- c(3, 5, 7, 9, 1, 1)
#google suggest to use rev(..)

b <- rev(a)

7

What are the vectors a + b, and a*b? Try and see.
a+b

[1] 4 6 16 16 6 4
a*b

[1] 3 5 63 63 5 3
What is the vector a + 10? Try and see.
a+10

[1] 13 15 17 19 11 11
Find the vectors s1, s2 with elements in a sorted in
(1) increasing, (2) decreasing order.
sort(a)

[1] 1 1 3 5 7 9
sort(a, decreasing = TRUE)

[1] 9 7 5 3 1 1
What do you get if you try to add x = c(1, 2, 3)
and y = c(1, 2, 3, 4)?
x <- c(1, 2, 3)
y <- c(1, 2, 3, 4)

x+y

Warning in x + y: longer object length is not a multiple of shorter object
length

[1] 2 4 6 5

We get a warning. What happens is that R tries to “recycle” the short vector x and add
sequentially to y. But 4 is not a multiple of 3, so it doesn’t really match. We get a result,
but also a warning.

3.5

install.packages("ggplot2")

This should give some messages, perhaps install necessary other packages first.
library(ggplot2)

Warning: package 'ggplot2' was built under R version 4.0.5

8

data(mtcars)

head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
#Redefine variable "am" as a factor, just to make figure labels look right.
shift <- factor(mtcars$am, labels = c("automatic", "manual"))

#make a plot
ggplot(mtcars, aes(x = wt, y = hp, color = shift)) +

geom_point(size = 3) +
labs(title = "Horsepower vs weight",

x = "Weight",
y = "Horsepower")

100

200

300

2 3 4 5
Weight

H
or

se
po

w
er shift

automatic

manual

Horsepower vs weight

9

b.

We try to add the suggested code.
ggplot(mtcars, aes(x = wt, y = hp, color = shift)) +

geom_point(size = 3) +
labs(title = "Horsepower vs weight",

x = "Weight",
y = "Horsepower") +

geom_smooth(method = lm)

`geom_smooth()` using formula 'y ~ x'

0

100

200

300

2 3 4 5
Weight

H
or

se
po

w
er shift

automatic

manual

Horsepower vs weight

The extra code adds estimated regression lines to the two groups of data, and also indicates
shaded areas where the true regression lines are likely to be found.

3.6
c. In my case, the code to read the file looks like below.

flights_NO <- read.csv("M:/Undervisning/Undervisningh21/Data/flights_NO.csv")

The file path as usual, will be different for each user. Note that the “automatic code” from
“Import dataset” makes the name of the dataframe equal to the name of the datafile. This is

10

in general not necessary. We may call the dataframe almost whatever we want. We use head
to examine top rows of data:
head(flights_NO)

Origin.Code Destination.Code Dep.Time Arr.Time Flight Airline.Code
1 AES BGO 715 800 4139 SK
2 AES BGO 715 800 4139 SK
3 AES BGO 715 800 4139 SK
4 AES BGO 715 800 4139 SK
5 AES BGO 715 800 4139 SK
6 AES BGO 1100 1140 4147 SK
Alliance Origin.Country Destination.Country Day.of.Week Block.Mins Seats
1 Star Alliance Norway Norway Monday 45 181
2 Star Alliance Norway Norway Tuesday 45 141
3 Star Alliance Norway Norway Wednesday 45 141
4 Star Alliance Norway Norway Thursday 45 141
5 Star Alliance Norway Norway Friday 45 141
6 Star Alliance Norway Norway Monday 40 90

It appears that the data contains flight information.

d. We run the code
df2 <- subset(flights_NO, Day.of.Week == "Monday" & Seats > 50)

The code filters out to a dataframe df2 all Monday fligths with more than 50 seats available
in the plane. We find the number of such by
nrow(df2)

[1] 488

and the total number in data is
nrow(flights_NO)

[1] 4897

e. The suggested code is
#write df2 to disk with given file name.
write.csv(df2, "LargeMondayFlights.csv", row.names = FALSE)

#view the working directory, you should see the new file there:
dir()

[1] "Ch1Solutions.html" "Ch1Solutions.pdf" "Ch1Solutions.Rmd"
[4] "Ch2Solutions.html" "Ch2Solutions.pdf" "Ch2Solutions.Rmd"
[7] "Ch3Solutions.html" "Ch3Solutions.pdf" "Ch3Solutions.Rmd"
[10] "Ch3Solutions_files" "Ch3Solutions_full.html" "friendsfile.csv"

11

[13] "LargeMondayFlights.csv"

And, yes - we see the new file there :-). I will remove it later, because I don’t want it there.

f. Now we want to write to the main data folder. Again you need to figure out (or use
autocomplete in R) the path to that folder. In fact the path is the same as you read
from in part c. For me the code will be:

write.csv(df2, "M:/Undervisning/Undervisningh21/Data/LargeMondayFlights_NO.csv")

To see the content of that folder, I can write:
dir("M:/Undervisning/Undervisningh21/Data/")

[1] "AirBnBSing2.csv" "alkfos.csv"
[3] "clock_auction.csv" "Company_sales.csv"
[5] "Cruiseship.csv" "Cruiseship4.csv"
[7] "desktop.ini" "flat_prices.csv"
[9] "flights_NO.csv" "Hospital_durations.csv"
[11] "HotelAS.csv" "LargeMondayFlights.csv"
[13] "LargeMondayFlights_NO.csv" "log708data.7z"
[15] "log708data.zip" "meat_brands.csv"
[17] "MetalAS.csv" "Money_vs_time.csv"
[19] "Mt.csv" "newdata.csv"
[21] "Norfirms.csv" "Nycflights2.csv"
[23] "Tdur.csv" "TeleAS.csv"
[25] "Trip_durations.csv" "used_cars.csv"
[27] "Wages.csv" "WaterWorld.csv"
[29] "world95.csv"

We see all the files that were there already, plus the new one.

3.7
a. There was a minor “error” in this question. Using ?normal or help(normal) does

not work as intended. Turns out we can use ?Normal with capital “N”. Or, one can
use ?distributions and then find that the normal distributions can be found under
dnorm.
Then ?dnorm will give the desired information. Here we can learn that there are four
variants, among which pnorm gives cumulative probabilities. So then we can find the
probabilities in the question as

pnorm(2.1)

[1] 0.9821356

12

(1 - pnorm(2.1))

[1] 0.01786442
or:
pnorm(2.1, lower.tail = FALSE)

[1] 0.01786442
pnorm(12, mean = 10, sd = 3)

[1] 0.7475075
pnorm(10.9, mean = 10, sd = 3) - pnorm(8.4, mean = 10, sd = 3)

[1] 0.32101

b. A Google search for “R calculate normal distribution” leads (among many other hits)
to the web page at Tutorialspoint.

c. Reading carefully the internal or external information tells us we need to use the
function qnorm to answer this question. So, to find b as specified in the question we
need to do

qnorm(0.80)

[1] 0.8416212

We also note that the answer “looks right” as we are working on the standard normal
distribution here. We could also check with the table in chapter 2.

d. This is similar to the question above, but using a general normal distribution. Obviously,
the number c must satisfy P [X ≤ c] = 0.10 (law of complement), so we can do

qnorm(0.10, mean = 10, sd = 3)

[1] 6.155345

Alternatively using the option lower.tail = FALSE we can write
qnorm(0.90, mean = 10, sd = 3, lower.tail = FALSE)

[1] 6.155345

e. From the documentation (and as shown in chapter 3) this is done via
set.seed(3333)
my_x <- rnorm(30, mean = 10, sd = 3)

#compute mean and standard deviation
M <- mean(my_x)
S <- sd(my_x)

13

https://www.tutorialspoint.com/r/r_normal_distribution.htm

#show result:
c(M, S)

[1] 10.720201 2.497178

We see the numbers fairly close to the “true” parameter values 10 and 3.

3.8
a. - d. We could go as follows.
a <- c("Aksel", "Amanda", "Hege", "Jakob", "Einar",

"Geir", "Anette", "Ketil", "Lise", "Falko")
b <- c(6, 10, 49, 62, 60,

53, 39, 54, 56, 43)
c <- c("Blond", "Blond", "Dark", "Dark", "Brown",

"Gray", "Dark", "Gray", "Dark", "Dark")
d <- c(6, 10, 20, 51, 51,

8, 10, 18, 10, 6)

e. - f. This can be done in two simple ways either (i) create the dataframe and rename
columns or (ii) create dataframe and set names at once. I prefer (ii) as it is more compact
code.
method (i)
friends <- data.frame(a, b, c, d)
names(friends) <- c("name", "age", "hair", "time")
head(friends)

name age hair time
1 Aksel 6 Blond 6
2 Amanda 10 Blond 10
3 Hege 49 Dark 20
4 Jakob 62 Dark 51
5 Einar 60 Brown 51
6 Geir 53 Gray 8
#method (ii)
friends <- data.frame(name = a, age = b, hair = c, time = d)
head(friends)

name age hair time
1 Aksel 6 Blond 6
2 Amanda 10 Blond 10
3 Hege 49 Dark 20
4 Jakob 62 Dark 51
5 Einar 60 Brown 51

14

6 Geir 53 Gray 8

We see the same result.

g. - h.
#get subset
friends2 <- subset(friends, age < 20)

#count rows
nrow(friends2)

[1] 2

i. Again using subset.
friends3 <- subset(friends, (age > 20) & (time > 10))
head(friends3)

name age hair time
3 Hege 49 Dark 20
4 Jakob 62 Dark 51
5 Einar 60 Brown 51
8 Ketil 54 Gray 18

NOTE: The parentheses in (age > 20) & (time > 10) are not strictly necessary, but it
makes the code clearer and “safer” than writing age > 20 & time > 10.

j. - k. New code:
#define new vector
not_seen <- c(0, 0, 0, 60, 50,

4, 4, 7, 5, 6)
#add vector to data frame.
friends$not_seen <- not_seen
head(friends)

name age hair time not_seen
1 Aksel 6 Blond 6 0
2 Amanda 10 Blond 10 0
3 Hege 49 Dark 20 0
4 Jakob 62 Dark 51 60
5 Einar 60 Brown 51 50
6 Geir 53 Gray 8 4

l. OK!

3.9
Now, continuing to work on the friends dataframe.

15

a. Writing e.g. ?hist at the console opens help for this function. There are some parameters
to play with. For example we can adjust the number of break points in the histogram
as below.

with(friends, hist(not_seen))

Histogram of not_seen

not_seen

F
re

qu
en

cy

0 10 20 30 40 50 60

0
2

4
6

8

#or
with(friends, hist(not_seen,

breaks = 14,
main = "Distribution of unseen days.",
xlab = "Days since last encounter."))

16

Distribution of unseen days.

Days since last encounter.

F
re

qu
en

cy

0 10 20 30 40 50 60

0
1

2
3

4
5

6

The distribution is very skewed!

b. This was a little tricky? Going to Google, searching for “R barplot categorical data”
led to many hits (as always). This link has a solution under “Categorical data”. First
we need to count the occurences, then call the barplot function.

count <- table(friends$hair)
barplot(count)

17

/https://www.datamentor.io/r-programming/bar-plot/

Blond Brown Dark Gray

0
1

2
3

4
5

#or we could do
#with(friends, barplot(table(hair)))

c. Here we can use the basic plot function.
with(friends, plot(age, time ,

main = "Unseen days by age.",
ylab = "Days not seen"))

18

10 20 30 40 50 60

10
20

30
40

50
Unseen days by age.

age

D
ay

s
no

t s
ee

n

NOTE: In the code we can choose to use with(friends, ...) or use the $ method to pull
out vectors from friends so the plot above could be created by
plot(friends$age, friends$time,

main = "Unseen days by age.",
ylab = "Days not seen",
xlab = "age")

d. We write the data frame to our working directory as follows.
write.csv(friends, "friendsfile.csv", row.names = FALSE)

Note: Without the row.names = FALSE setting, R will add a column with numbers to the
file. This column is included if you re-read the file into a new dataframe. Not a big problem,
but usually unneccessary.

e. Read the file back. Printing first rows shows we get the same data back.
friends2 <- read.csv("friendsfile.csv")
head(friends)

name age hair time not_seen
1 Aksel 6 Blond 6 0
2 Amanda 10 Blond 10 0

19

3 Hege 49 Dark 20 0
4 Jakob 62 Dark 51 60
5 Einar 60 Brown 51 50
6 Geir 53 Gray 8 4
head(friends2)

name age hair time not_seen
1 Aksel 6 Blond 6 0
2 Amanda 10 Blond 10 0
3 Hege 49 Dark 20 0
4 Jakob 62 Dark 51 60
5 Einar 60 Brown 51 50
6 Geir 53 Gray 8 4

NOTE: A careful check in the environment shows that the data types are changed slightly
when re-reading the data from file. Some variables in friends that were numeric are
interpreted as integer in friends2. This will usually not cause problems, if necessary we
can use functions like as.numeric to force data back to same type. Also, modern data-
analysis packages like readr, dplyr includes functions to test carefully that dataframes are
identical, as well as read-and-write functions with more control on data types.

3.10
a. - b. In my folder system I can find the file as
w95 <- read.csv("M:/Undervisning/Undervisningh21/Data/world95.csv")
names(w95)

[1] "country" "population" "density" "urban"
[5] "religion" "lifeexpf" "lifeexpm" "literacy"
[9] "pop_incr" "babymort" "gdp_cap" "region"
[13] "calories" "aids" "birth_rt" "death_rt"
[17] "aids_rt" "log_gdp" "lg_aidsr" "b_to_d"
[21] "fertilty" "log_pop" "cropgrow" "lit_male"
[25] "lit_fema" "climate" "lit_ratio" "main_religion"
[29] "inv_gdp"

Lots of demographic variables.

c. This will give number of columns and rows
#write out in one row:
c(ncol(w95), nrow(w95))

[1] 29 109

d.

20

head(w95, 10)

country population density urban religion lifeexpf lifeexpm literacy
1 Austria 8000 94.0 58 Catholic 79 73 99
2 Belgium 10100 329.0 96 Catholic 79 73 99
3 Canada 29100 2.8 77 Catholic 81 74 97
4 France 58000 105.0 73 Catholic 82 74 99
5 Ireland 3600 51.0 57 Catholic 78 73 98
6 Italy 58100 188.0 69 Catholic 81 74 97
7 Netherlands 15400 366.0 89 Catholic 81 75 99
8 Portugal 10500 108.0 34 Catholic 78 71 85
9 Spain 39200 77.0 78 Catholic 81 74 95
10 Switzerland 7000 170.0 62 Catholic 82 75 99
pop_incr babymort gdp_cap region calories aids birth_rt death_rt aids_rt
1 0.20 6.7 18396 OECD 3495 1150 12 11.0 14.37500
2 0.20 7.2 17912 OECD NA 1603 12 11.0 15.87129
3 0.70 6.8 19904 OECD 3482 9511 14 8.0 32.68385
4 0.47 6.7 18944 OECD 3465 30003 13 9.3 51.72931
5 0.30 7.4 12170 OECD 3778 392 14 9.0 10.88889
6 0.21 7.6 17500 OECD 3504 21770 11 10.0 38.05944
7 0.58 6.3 17245 OECD 3151 3055 13 9.0 19.83766
8 0.36 9.2 9000 OECD NA 1811 12 10.0 18.29293
9 0.25 6.9 13047 OECD 3572 24202 11 9.0 61.73980
10 0.70 6.2 22384 OECD 3562 3662 12 9.0 52.31429
log_gdp lg_aidsr b_to_d fertilty log_pop cropgrow lit_male lit_fema
1 4.264723 1.704204 1.090909 1.50 3.903090 17 NA NA
2 4.253144 1.738291 1.090909 1.70 4.004321 24 NA NA
3 4.298940 2.008476 1.750000 1.80 4.463893 5 NA NA
4 4.277472 2.201645 1.397849 1.80 4.763428 32 NA NA
5 4.085291 1.612118 1.555556 1.99 3.556303 14 NA NA
6 4.243038 2.070582 1.100000 1.30 4.764176 32 98 96
7 4.236663 1.817599 1.444444 1.58 4.187521 26 NA NA
8 3.954243 1.788367 1.200000 1.50 4.021189 32 89 82
9 4.115511 2.280936 1.222222 1.40 4.593286 31 97 93
10 4.349938 2.206602 1.333333 1.60 3.845098 10 NA NA
climate lit_ratio main_religion inv_gdp
1 temperate NA Catholic 5.435964e-05
2 temperate NA Catholic 5.582849e-05
3 arctic / temp NA Catholic 5.024116e-05
4 temperate NA Catholic 5.278716e-05
5 temperate NA Catholic 8.216927e-05
6 mediterranean 1.020833 Catholic 5.714286e-05
7 temperate NA Catholic 5.798782e-05
8 maritime 1.085366 Catholic 1.111111e-04

21

9 temperate 1.043011 Catholic 7.664597e-05
10 temperate NA Catholic 4.467477e-05

e. We get a spreadsheet-type look at data.

f. We can do
malemean <- mean(w95$lifeexpm)
femalemean <- mean(w95$lifeexpf)

#make a vector
means <- c(malemean, femalemean)
#name the components
names(means) <- c("M", "F")
#print means:
means

M F
64.91743 70.15596

Males were at about 65 years, females at 70 on average.

g. We can just copy the code above and make minor changes.
malemed <- median(w95$lifeexpm)
femalemed <- median(w95$lifeexpf)

#make a vector
medians <- c(malemed, femalemed)
#name the components
names(medians)<- c("M", "F")
#print medians:
medians

M F
67 74

The medians are somewhat larger than the means, so probably a few countries are particularly
low, drawing the means down. I.e. there is some skewness. The way to see this is of course
to visualize, which is next.

h.
#allow side-by-side plots:
par(mfrow = c(1,2))

with(w95, hist(lifeexpm,
breaks = 15))

with(w95, hist(lifeexpf,

22

breaks = 15))

Histogram of lifeexpm

lifeexpm

F
re

qu
en

cy

40 50 60 70

0
5

10
15

Histogram of lifeexpf

lifeexpf

F
re

qu
en

cy

50 60 70 80

0
5

10
15

#reset plot parameters:
par(mfrow = c(1,1))

These histograms show the skewness to the left in both variables. i. Ok, so we go
MM <- max(w95$lifeexpm)
MM

[1] 76

Ok, 76 years was the maximum.

j. Which countries reached max?
#make a subset: Note, we use the variable name MM (not the number #76) to make the code general.
max_df <- subset(w95, lifeexpm == MM)

#list the names (in the variable "country")
max_df$country

[1] "Iceland" "Japan" "Israel" "Costa Rica"

23

or to see more related data:
head(max_df)

country population density urban religion lifeexpf lifeexpm literacy
16 Iceland 263 2.5 91 Protstnt 81 76 100
38 Japan 125500 330.0 77 Buddhist 82 76 99
72 Israel 5400 238.0 92 Jewish 80 76 92
94 Costa Rica 3300 64.0 47 Catholic 79 76 93
pop_incr babymort gdp_cap region calories aids birth_rt death_rt
16 1.10 4.0 17241 OECD NA 31 16 7
38 0.30 4.4 19860 Pacific/Asia 2956 713 11 7
72 2.22 8.6 13066 Middle East NA 279 21 7
94 2.30 11.0 2031 Latin America 2808 587 26 4
aids_rt log_gdp lg_aidsr b_to_d fertilty log_pop cropgrow lit_male
16 10.3333333 4.236562 1.5953210 2.285714 2.11 2.419956 1 NA
38 0.5681275 4.297979 0.8930775 1.571429 1.55 5.098644 13 NA
72 5.1666667 4.116143 1.3888076 3.000000 2.83 3.732394 17 95
94 17.7878788 3.307710 1.7783811 6.500000 3.10 3.518514 6 93
lit_fema climate lit_ratio main_religion inv_gdp
16 NA temperate NA Protstnt 5.800128e-05
38 NA mediterranean NA Buddhist 5.035247e-05
72 89 temperate 1.067416 Other 7.653452e-05
94 93 tropical 1.000000 Catholic 4.923683e-04

k.
meanpop <- mean(w95$population)
medianpop <- median(w95$population)

c(meanpop, medianpop)

[1] 47723.88 10400.00

The mean is about 47 million, while the median is about 10.4 million. A striking difference.
What proportion of countries have less than the mean population? We could subset the
dataframe and count rows.
LessThanMean <- subset(w95, population < meanpop)
#find the count:
count <- nrow(LessThanMean)
#find the proportion
proportion <- count/nrow(w95)

c(count, proportion)

[1] 86.0000000 0.7889908

24

So, 86 countries out of 109 were below the mean population. That’s about 80% of the
countries. That shows in this case the mean is not a “typical value” for population sizes. The
median of course by definition splits the sample 50/50. Histogram follows.
with(w95, hist(population, breaks = 30))

Histogram of population

population

F
re

qu
en

cy

0 200000 400000 600000 800000 1000000

0
20

40
60

80

We see two countries in particular sticking out, that would be China and India. This explains
much of the problems with the mean in this case.

l. We use the plot function.
with(w95, plot(lifeexpf, literacy,

main = "Female life length vs Literacy",
xlab = "Life expectancy",
ylab = "Literacy (%)"))

25

50 60 70 80

20
40

60
80

10
0

Female life length vs Literacy

Life expectancy

Li
te

ra
cy

 (
%

)

We see that the two variables have a strong correlation, and again, we can suspect that both
are related to some of the same underlying variables.

m. We just subset and plot as suggested.
OECD95 <- subset(w95, region == "OECD")
with(OECD95, plot(lifeexpf, literacy,

main = "Female life length vs Literacy (OECD only)",
xlab = "Life expectancy",
ylab = "Literacy (%)"))

26

78 79 80 81 82

85
90

95
10

0
Female life length vs Literacy (OECD only)

Life expectancy

Li
te

ra
cy

 (
%

)

n.
Regions <- table(w95$region)
Regions

##
Africa East Europe Latin America Middle East OECD
19 14 21 17 21
Pacific/Asia
17
#OR: with(w95, table(region))

o.
mean(w95$calories)

[1] NA
mean(w95$calories, na.rm = T)

[1] 2753.827

We get NA because there are some NA values in the original variable.

p. Let’s try

27

table(is.na(w95$calories))

##
FALSE TRUE
75 34

There are in fact 34 countries with no value for calories. This makes using the calculated
mean value a bit dangerous. We can do the following (not asked for) code to see what regions
have most NA’s. In particular East Europe and the Middle East have high proportions of
NA.
table(w95$region, is.na(w95$calories))

##
FALSE TRUE
Africa 16 3
East Europe 3 11
Latin America 19 2
Middle East 8 9
OECD 18 3
Pacific/Asia 11 6

q. Ok
with(w95, boxplot(calories ~ region))

28

Africa East Europe Middle East Pacific/Asia

20
00

25
00

30
00

35
00

region

ca
lo

rie
s

Ok, some clear differences are observed. With the above information about NA, we should
be careful about some of the regional data.

29

	3.1
	3.2
	3.3
	3.4
	3.5
	3.6
	
	3.7
	3.8
	3.9
	3.10

